

Horizon Europe

Project: 101138405 — Net4Cities

Deliverable 4.1

Systems Architecture

Net4Cities Consortium

Imprint
Suggested citation:
Ødegård, R., Chatterjee, A., Logna, R., Quedenau, J., Garcia, P. Sanz Pozo, R., Soares, J.,

Lopez-Aparicio, S. (2024).
D4.1 System Architecture. Horizon Europe Project Net4Cities.

Main findings and deliverables of the Net4Cities project will be available at www.net4cities.eu

This project has received funding from the European Union’s Horizon Europe funding

programme under the call HORIZON-CL5-2023-D5-01 – No. 101138405

Views and opinions expressed are only those of the author(s) and do not necessarily reflect

those of the European Union or the European Climate, Infrastructure and Environment

Executive Agency (CINEA). Neither the European Union nor the granting authority can be held

responsible for them.

http://www.net4cities.eu/

Document Control Information

Settings Value

Document Title: D4.1 System Architecture.

Project Title: Net4Cities

Document Author: Rune Ødegård

Ayan Chatterjee

Robert Logna

Doc. Version: 1

Sensitivity: Public

Date: 30/08/2024

Document Approver(s) and Reviewer(s):

NOTE: All Approvers are required. Records of each approver must be maintained. All

Reviewers in the list are considered required unless explicitly listed as Optional.

Name Role Action Date

Sanz Pozo, Roberto Reviewer Suggestions and comments that improved the

document

22.07.2024

Jörn Quedenau Reviewer Suggestions and comments that improved the

document

26.07.2024

Joana Soares Reviewer Suggestions and comments that improved the

document

30.07.2024

Susana Lopez-Aparicio Reviewer Suggestions and comments that improved the

document

07.08.2024

Erika von

Schneidemesser

Review

and

Approval

Minor edits, review and approval 26.08.2024

Document history:

The Document Author is authorized to make the following types of changes to the document

without requiring that the document be re-approved:

• Editorial, formatting, and spelling

• Clarification

To request a change to this document, contact the Document Author or Owner.

Changes to this document are summarized in the following table in reverse chronological

order (latest version first).

Revision Date Created by Short Description of Changes

Configuration Management: Document Location

The latest version of this controlled document is stored in the Sync&Share file-sharing

platform at “Net4Cities/WP4/D4.1 systems architecture system architecture”

Table of Contents

Executive Summary .. 7

1. Introduction and Goals ... 8

1.2 Purpose ... 8

1.3 Scope .. 8

1.4 Structure of the Document ... 8

2. Requirements Overview ... 9

2.1 Measurement Data .. 9

2.1.1 Air Pollution measurement data .. 9

2.1.2 Noise Measurement Data ..10

2.1.3 Traffic Counting Data ...10

2.2 Model Data ...11

2.2.1 Air Pollution Modelling Data ...12

2.2.2 Noise Modelling Data ...13

3. Quality Goals ...14

3.1 Stakeholders ..15

4. Architecture Constraints ..16

4.1 Technical Constraints ...16

4.2 Organizational Constraints ...19

4.3 Legal Constraints ...20

5. System Scope and Context ...20

5.1 Business Context ...20

6. Technical Context ..22

6.1. Data Ingestion Layer ..22

6.2. Data Storage Layer ..23

6.3. Data Processing and Querying Layer ...23

6.4. Data Serving and Visualization Layer ...24

7. Solution Strategy ...24

8. Building Block View ...26

8.1 Black Box Descriptions ...29

8.2 White Box Descriptions ...29

9. Runtime View ..30

9.1 Data Ingestion Phase ..31

9.2 Data Storage Phase ..31

9.3 Data Processing and Querying Phase ..31

9.4 Data Serving and Visualization Phase ..31

9.5 Sequence of Processes ..31

9.5.1 Ingesting Instrument Data ...31

9.5.2 Ingesting Inventory Data and Storing ..32

9.5.3 Persistence of Spatio-temporal Data and Quality Control33

9.5.4 Persistence of RASTER Spatio-temporal RASTER Data and Quality Control34

10. Deployment ...35

10.1 Identify Infrastructure Elements ...36

10.3 Document the Mapping ...36

11. Cross-cutting Concepts ..37

11.1 Data Serialization and Schema Management ...37

11.2 Real-Time Data Processing and Streaming ..38

11.3 Distributed Computing and Scalability ..38

11.4 Geospatial and Temporal Data Management ...38

11.5 Interactive Data Exploration and Visualization ..38

12. Quality Requirements ..39

12.1 Quality Tree..39

12.1.1 Performance ..39

12.1.2 Reliability ...39

12.1.3 Security ..39

12.1.4 Maintainability ..39

12.1.5 Usability ...39

12.2 Quality Scenarios ...39

12.2.1 Scenario 1: High Throughput Data Ingestion ..39

12.2.2 Scenario 2: Real-Time Query Response ..40

12.2.3 Scenario 3: Scalability ..40

12.2.4 Scenario 4: System Monitoring and Maintenance ..40

13. Risks and Technical Debts...40

13.1 Technical Debts in the System Description ...41

14. Glossary ..42

Conclusions ..43

Acknowledgment ..43

Acronyms ...43

References ...45

List of Figures
Figure 1: Net4Cities digital infrastructure concept diagram. ... 9

Figure 2: Net4Cities Data Hub conceptual diagram. ...11

Figure 3. Net4Cities Data Hub in a business context. ...21

Figure 4. Net4Cities Data Hub in a technical context. ...22

Figure 5. The context diagram. ...27
Figure 6. The Level 1 diagram. ...28

Figure 7. The Level 2 diagram. ...28

Figure 8. The sequence diagram for the Kafka producer for instrument data.32

Figure 9. The sequence diagram for the Kafka producer for inventory data and persistence.

 ...33

Figure 10. The sequence diagram for data pipeline #1 for incoming data storage.34

Figure 11. The sequence diagram for data pipeline #2 for quality control.34

Figure 12. The sequence diagram for the data for incoming raster data storage.35

Figure 13. The crosscutting concepts. ..37

List of Tables ..
Table 1. Roles and responsibilities. ..16

Table 2. List of Technical Constraints (TC). ...17

Table 3. List of Organizational Constraints (OC). ..19

Table 4. List of Legal Constraints (LC). ...20

Table 5. The requirements, architectural approaches, and description.25

Table 6. Table of key terms used in this template. ...42

Table 7. Table of acronyms used in this template. ...43

Executive Summary

This document outlines the proposed architecture aiming to unify all parties involved and

streamline the development process effectively. Its main objectives include offering

developers’ guidance and providing a framework for stakeholders to assess decisions and

documenting key architectural choices for transparency and accountability. The document

covers a scope, including a high-level overview of the intended system architecture and

detailed descriptions of its components. It also provides a description of the framework

employed.

The Net4Cities Data Hub is specifically designed to manage and analyze air pollution and

noise-related data from sources such as urban air quality models, noise model systems, traffic

data, and air quality and noise monitoring stations. This comprehensive platform integrates

diverse data streams with advanced analytical models to deliver valuable insights into urban

environmental dynamics. The system is structured into four layers: Data Ingestion, Data

Storage, Data Processing and Querying, and Data Serving and Visualization. Each layer

employs cutting-edge technologies to ensure data integrity, consistency, and accessibility. By

bringing these elements together, the platform empowers decision-makers, enhances public

awareness, and provides essential insights to researchers, policymakers, and citizens,

facilitating informed actions for sustainable urban development.

Key technologies that are utilized include Kafka for real-time data streaming, Avro, for data

serialization, Schema Server for managing data formats, Spark for processing large scale data,

PostgreSQL for storing inventory data (metadata) and HBase for temporal and spatial

observation data and model related data.

The operation of the system involves a series of steps starting with data ingestion. During this

phase data is gathered from sources, validated and serialized. Subsequently this information

is stored in storage solutions, processed using tools, like Apache Spark and GeoMesa before

being accessed through a range of interfaces and visualization tools. This architectural

approach ensures handling of data types on a large scale facilitating complex queries, real-

time processing and interactive analysis of the data.

1. Introduction and Goals

Welcome to the Architecture Design Document for the Net4Cities Data Hub. This document

acts as a blueprint of the systems architecture offering consortium members and stakeholders

an overview and insight into the architectural strategies and decisions that will drive the devel-

opment of the Net4Cities Data Hub. The main goal of this document is to ensure coherence

among project contributors and facilitate communication throughout the development phase.

1.2 Purpose

The Architecture Design Document serves three purposes:

• Guidance: It provides structured descriptions of the system architecture to guide develop-

ment teams outlining components, relationships and dynamic interactions. This includes

defining software layers, subsystems, interfaces and dependencies.

• Evaluation: It establishes a framework for stakeholders to evaluate choices against re-

quirements and constraints, ensuring that the architecture aligns with all specified business

and technical objectives.

• Documentation: It documents decisions impacting the system providing argumentation,

for choices made to promote clarity and accountability.

1.3 Scope

This document outlines the design of the system covering:

• Overview of the components and how they interact.

• Detailed description of each component’s functions, capabilities and interactions.

• Specifications of the technology stack including platforms, programming languages and

tools used.

The target audience includes:

• Developers working on Net4Cities Data Hub: To understand the system structure and their

roles in implementing and integrating components.

• Quality Assurance Teams: To develop testing strategies based on the design and inter-

connections between components.

• Project Managers and Decision Makers: To monitor project progress and make informed

decisions on resource allocation and risk management.

• External stakeholders: Such as clients and partners who require an understanding of the

system’s architecture for integration and evaluation purposes.

1.4 Structure of the Document

This document is divided into sections:

• Introduction: Providing an overview of the document’s purpose, scope and target audi-

ence.

• Architectural Representation: Describing the model and design utilized.

• System Architecture: Offering an analysis of system components, their interconnec-

tions and the surrounding environment.

• Architectural Goals and Constraints: Clarifying the objectives and the limitations influ-

encing the system design.

• Design Decisions: Summarizing choices made and explaining the reasoning behind

them.

• Quality Scenarios: Outlining specifications for quality attributes such as scalability, re-

liability and maintainability.

• Appendices and References: Including information that supports decisions and refer-

ences to external documents.

This document builds upon the open source Arc42 template1, for documenting software and

system architectures while adhering to the terminology and guidelines outlined in the standard

ISO/IEC/IEEE 42010:2022.

2. Requirements Overview

The overall requirement of the Net4Cities Data Hub is to receive, store, process, provide and

handle air pollution and noise related data, including emission inventories and metadata. The

simplified concept diagram below (see Figure 1) illustrates the aggregate data requirement,

data flow and end users.

Figure 1: Net4Cities digital infrastructure concept diagram.

In the overview of requirements, we have emphasized two areas: data from measurements

and data from models. These categories consist of subdivisions related to air pollution data,

noise data and traffic data. The focus is to ensure quality control and integrating APIs for ma-

chine to machine (M2M) data transmission.

2.1 Measurement Data

2.1.1 Air Pollution measurement data

• Instrument Observation: Instruments are set up to monitor both (regulated) air pollu-

tants and greenhouse gases, such as particulate matter (PM), nitrous oxide (N2O), me-

thane (CH4), carbon dioxide (CO2) and volatile organic compounds (VOCs), and emerg-

ing pollutants2 such as particle number concentration (PNC), Lung Deposited Surface

Area (LDSA), ammonia (NH3), and black carbon (BC). These instruments provide real-

time data with high temporal resolution, or aggregated when the sampling technique

does not allow such resolution (e.g., ammonia will be measured by passive sampling

with monthly resolution).

• Metadata: It includes the location coordinates of the measurements, altitude details,

instrument identification numbers and specifics on measurement and sampling tech-

niques.

• Quality control: A procedure to identify and correct data anomalies. This includes com-

paring data from neighboring instruments adjusting for calibration drifts and detecting

any outliers.

• Data storage solutions to enable retrieval based on time stamps, location or pollution

levels. This ensures access for real-time monitoring and historical analysis purposes.

2.1.2 Noise Measurement Data

• General Noise Levels: Data, from an indicator register that captures noise levels across

the spectrum (usually 20 Hz to 20 kHz)3. This information is important for understanding

noise pollution levels in general.

• Frequency Distribution Data: Information from the spectrum register that shows noise

levels across frequency bands. This breakdown is crucial for identifying sources of

noise and their effects.

• Sound Level: Similar to the General Noise Levels and Frequency Distribution Data but

focusing on levels that vary based on the Sound Level Meter (SLM) setup. Percentiles

such as L90, L50, L10 describe the noise level exceeded for 90%, 50% and 10% of the

measurement period respectively. These values are useful for understanding how

noise levels vary with high temporal resolution.

• Metadata: Includes location coordinates of measurements, altitude, instrument ID and

details of Sound Level Meter (SLM) configuration/setup data. This involves specifics

about microphone sensitivity, frequency weighting (e.g., A,C,Z-weighting) and time

weighting (fast slow, impulse), during measurements.

• Ancillary and Compliance Data (markers): Records of time points highlighted as im-

portant during the measurement process, which could signal occurrences or disturb-

ances needing additional quality control.

Given the need for efficient data storage, we propose storing noise level data at 1-minute in-

tervals. This method provides the granularity necessary for detailed analysis. Longer-term in-

dicators, such as hourly averages, can then be derived from these 1-minute values as required.

This approach ensures optimal use of storage by maintaining detailed data only at the smallest

necessary interval. Alternatively, we could consider storing longer-term aggregates directly,

such as 1-hour averages, which might reduce the complexity of on-demand calculations but at

the cost of losing finer granularity. We need to evaluate whether it is more efficient to store

only 1-minute interval data and calculate longer-term indicators as needed, or if it's better to

store these longer intervals directly for easier but less detailed access.

2.1.3 Traffic Counting Data

• Vehicle Numbers: The count of cars passing by a given location, on a road during a

period. This is crucial for estimating traffic emissions and noise pollution levels.

• Vehicle Categorization: Different types of vehicles release varying amounts of emis-

sion amount and pollutant and produce different levels of noise. Data should distin-

guish between vehicle categories like motorcycles, cars, vans, buses and trucks.

• Traffic Patterns: Details about the speed and volume of traffic. Slow-moving or idling

traffic can lead to higher emissions per vehicle.

• Time Sensitive Information: Data specific to time periods, such as daily and seasonal

variations in traffic flow. This helps in understanding peak traffic times and off-peak

times, which have implications for emission noise pollution levels.

• Geographic Details: Location-based data where traffic counts are done. This assists

in identifying areas with traffic that may contribute more to pollution levels.

• Road Slopes and Design: Information on road elevations, declines and layout (e.g.,

intersections, roundabouts).

2.2 Model Data

The concept diagram (see Figure 2) illustrates the needed data to be stored in the Net4Cities

Data Hub to conduct an air quality dispersion simulation, including improved source apportion-

ment, noise simulations and the storage of the output from these models.

Figure 2: Net4Cities Data Hub conceptual diagram.

2.2.1 Air Pollution Modelling Data

Air quality dispersion modelling4 is used to calculate how air emissions are dispersed in the

atmosphere over time and space. This type of modelling is essential for understanding the

impact of different pollutants from various sources, such as industrial plants, traffic, house

heating, agricultural activities, etc., on the air quality of surrounding environments4.

There are several important data that are required to carry-out air quality dispersion modelling

scenarios. Within the Net4Cities Data Hub, we will store traffic-related emissions data as line

sources and industrial data as point sources. Natural emissions and other remaining sources

that don't fit into the line or point categories are classified as area sources (e.g., as gridded

data). Additionally, we will include transboundary/background sources and the necessary ter-

rain data. Meteorology data as wind speed and direction, temperature, humidity, and atmos-

pheric stability play a critical role in determining how pollutants travel and dilute over time. But

due to the complexity and volume of such data, these will probably not be stored in the plat-

form, only linked. Users are encouraged to obtain meteorological data from reliable sources to

ensure the accuracy and effectiveness of the air quality dispersion modeling.

Line sources: Line sources are critical for modelling urban air quality because they simulate

the continuous release of pollutants from traffic, which is often a major contributor to local air

pollution levels. The inputs required include:

• Coordinates of the traffic network as line paths (series of coordinates defining the path).

• Road slopes.

• Vehicle Speeds.

• Traffic composition (i.e. vehicle types/categories).

• Traffic counts (annual average daily traffic).

• Emission Factors for different pollutants (NOx, PM10, PM2.5, SO2, etc.) and vehicle types

(EURO, heavy, etc.).

• For particles (PM) one also needs precipitation data for resuspension.

• Traffic variation (weekly- and diurnal variations).

Point Sources: These are typically single, identifiable sources of emissions that release pol-

lutants from a fixed location and known height, such as smokestacks or exhaust vents. The

inputs required include:

• Location: latitude, longitude, and elevation.

• Height of the release point above ground level.

• Exit temperature of the emissions which affects plume rise.

• Exit velocity of the emissions which impacts plume behavior.

• Pollutant type (NOx, PM10, PM2.5, SO2, etc.) and emission rate (e.g., grams per second).

• Temporal profiles in emissions (weekly- and diurnal variations).

Area Sources: These sources emit pollutants from a defined area rather than a single point.

Examples include residential heating, agricultural fields, landfills, or small industrial sites. In-

puts needed are:

• Coordinates of the area(s) defined as a grid(s).

• Pollutant type (NOx, PM10, PM2.5, SO2, etc.) and emission rate (e.g., tones per year).

• Temporal profiles in emissions (weekly and diurnal variations).

Boundary Conditions (Transboundary Concentrations): When modeling air quality, bound-

ary conditions are critical for the model. These boundary conditions, also known as trans-

boundary concentrations, are the air masses coming into the model domain. The inputs re-

quired include:

• Hourly concentration values of the pollutant to be modelled entering the model domain.

For non-inert pollutants like NO2, one also needs O3, NO additional to NO2.

Terrain Data: Terrain data is critical for air quality dispersion modeling because it significantly

influences how air pollutants disperse in the environment8. Here are the key aspects of terrain

data that are needed for effective modeling. The inputs required include:

• Coordinates of the grid cells defined as a square (in the data hub this will defined as

polygons).

• Terrain value for each grid cell.

• Terrain type (elevation data, Land Use and Land Cover (LULC) data, surface rough-

ness, vegetation types, etc.).

In addition to these data, air quality dispersion models require several 2- and 3-dimensional

meteorological parameters such as wind speed and wind direction, temperature, atmospheric

stability, mixing height, relative humidity, precipitation, etc. We have decided not to store me-

teorological data in the Net4Cities Data Hub due to the challenges associated with storing such

data and the unclear purpose of storing all this information at this stage. Therefore, meteoro-

logical data will not be described further in this architecture document. It may be useful to

further discuss the possibility of using terrain data and meteorological data, and to consider

their interrelated roles in diffusion models; however, that is not in the scope of this document.

2.2.2 Noise Modelling Data

There are several models to evaluate, through calculation methods, the environmental noise

levels produced by the main noise sources (traffic, railway, industry, airports) existing in a zone.

The European Directive 2002/49/EC states that the method that must be used in Europe is

CNOSSOS-EU. Proper noise modeling requires a comprehensive set of data starting with

source data, which includes the type, location, and power levels of the noise source. This data

should detail the sound power levels in decibels and the operating schedules, indicating fre-

quency and operational times, as these factors significantly influence noise exposure.

In the case of traffic noise, the sound power levels are obtained from the traffic data, specifically

from the amount of each vehicle class (passengers, light trucks, heavy trucks and motorbikes)

and their respective speeds, along with the characteristics of the road (type of pavement, etc).

Receiver data is also crucial, encompassing the specific locations and heights at which noise

impacts are assessed, such as in residential areas, schools, or hospitals. This ensures that

evaluations are focused on areas where noise may have the most effect. Terrain and obstacle

data are vital for modelling how sound travels through different environments. This includes

the digital elevation model, and the buildings and barriers that may influence the sound prop-

agation path, from the source to the receptor.

We will not store all this data in the Net4Cities Data Hub, instead, we will focus on line sources

(traffic) and terrain data.

Line sources: Understanding how noise disperses from line sources, such as road traffic, is

crucial for accurate noise modeling in urban environments and the design of effective noise

control measures. The inputs required include:

• Coordinates of the traffic network as line paths to map the exact locations of roads,

highways, and other transportation routes where noise generation occurs.

• Vehicle speeds at which vehicles travel along these paths directly influence the sound

power levels generated.

• Traffic composition (i.e., vehicle types/categories) has distinct noise emission charac-

teristics, contributing differently to the overall noise level.

• Traffic counts (annual average daily traffic) quantify the number of vehicles passing

through a specific section of the traffic network. Higher traffic volumes generally lead

to increased noise levels, making this a critical factor in noise modeling.

• Traffic variation (weekly- and diurnal variations) can vary significantly depending on the

time of day and day of the week. It is important to account for these variations, as noise

levels can fluctuate based on peak and off-peak traffic periods.

• The type of pavement can affect the noise generated by vehicles. They have varying

levels of noise absorption and reflection capabilities, influencing the overall sound

power levels emitted by traffic.

Terrain Data: Terrain data is crucial for noise modeling because it significantly influences how

sound waves travel and interact with the environment. The inputs required includes:

• Coordinates of the grid cells defined as a square (in the data hub this will defined as

polygons).

• Terrain value for each grid cell.

• Terrain type (elevation data, LULC data, surface roughness, vegetation types, etc.).

• Obstacles (buildings and barriers/walls in the surrounding of the NMT).

3. Quality Goals

When creating a data hub that manages huge amounts of temporal and spatial data, it is es-

sential to establish clear quality objectives. The primary goals for ensuring quality in the

Net4Cities Data Hub are robustness, efficiency, scalability and the ability to provide insights.

The key quality goals for the Net4Cities Data Hub are:

Performance and Efficiency

• Low Latency Processing: Aim for minimum delays in processing and querying data

even for handling extensive spatial and temporal datasets.

• Optimized Data Storage: Utilize HBase's efficient storage mechanisms and GeoMesa's

indexing strategies to optimize data storage, reducing storage costs and speeding up

query responses5.

Scalability and Flexibility

• Horizontal Scalability: Develop a system that can scale horizontally by utilizing Apache

Sparks’ distributed computing capabilities and Kafka’s scalable messaging system to

manage growing data volumes and concurrent users effectively6.

• Adaptive Data Models: Support data models accommodating various datasets with dif-

ferent spatial and temporal resolutions.

Data Integrity and Accuracy

• High Data Quality: Implement checks to ensure quality, consistent data throughout the

hub, particularly when integrating information from multiple sources.

• Temporal and Spatial Precision: Precision in representing spatial data should be main-

tained at a high level along with effective querying utilizing GeoMesa’s features for

spatio-temporal indexing 5.

Reliability and Availability

• High Availability: The data hub services must ensure availability through fault tolerance

strategies and recovery plans utilizing Kafka’s replication and Sparks’ resilient distrib-

uted datasets (RDDs)8.

• Data Recovery: Robust backup and recovery processes should be implemented to

safeguard against data loss and ensure business operations.

Security and Compliance

• Data Security: Where needed, strict data security measures must be enforced, includ-

ing encryption during transit and rest, access controls and audit logging to safeguard

information7.

• Regulatory Compliance: Adherence to data protection regulations and standards is cru-

cial to ensure compliance with industry requirements7.

Usability and Accessibility

• User-Friendly Interfaces: User-friendly interfaces should be provided for both technical

experts and non-experts to enable querying, visualization and analysis of the data.

• Accessibility: Sufficient documentation on the architecture, data models, APIs, and us-

age examples of the system should be offered to enhance ease of use.

Monitoring and Maintenance

• Monitoring: Utilize monitoring software to keep track of the well-being of the system,

allowing for detection and fixing of problems.

• Maintenance: Create a system that will be easy to maintain with instructions, for up-

dates, expansion and optimizing performance.

3.1 Stakeholders

The list identifies the main stakeholders of the Net4Cities Data Hub as follows. Clarifying these

roles ensures that expectations around implementation, system reliability, and data accessi-

bility are clearly understood and met. This will facilitate better integration, compliance, and

collaboration across all parties involved.

• Stakeholders, such as development teams, project coordinators, and external re-

searchers need to understand the system architecture as they have diverse expecta-

tions and roles that significantly influence the structure and functionality of the Net4Cit-

ies Data Hub This clarity ensures all parties understand their influence on the system's

design and functionality.

• Individuals or entities that require assurance of the system architecture's reliability.

• Collaborators involved in working with or deploying the system architecture.

• Parties needing access to the system's architectural documentation for their responsi-

bilities.

• Key decision-makers responsible for guiding system decisions and development.

Table 1. Roles and responsibilities.

Role Expectations

NILU’s Development

Team

Clear and measurable implementation plan and guidelines that out-

line the structure and functionality of the Net4Cities Data Hub

RIFS’s Development

Team

Clear and measurable implementation plan and guidelines that out-

line the structure and functionality of the Net4Cities Data Hub

Development Team

using the APIs (for in-

stance EarthSense)

Clear onboarding process with sufficient documentation (including

code examples) that covers all aspects of the APIs. Stability and

reliability of the APIs, including proper versions. Support and com-

munity engagement, including a Community Forum where us-

ers/developers can ask questions.

Project Coordinator Integrate inputs from relevant work packages and partners, con-

duct successful piloting activities, and finally deliver a high-quality

system that supports the unique value proposition.

External Researchers Expect the system to provide high-quality, accessible data with ad-

vanced analytical tools, ensure data accuracy and security, support

integration with other research tools, and facilitate collaboration

and data sharing.

Local and national en-

vironmental agencies

Expect the system to accurately collect and report data, ensure

data accessibility and security, support regulatory compliance, inte-

grate with other systems, promote public transparency, and be

user-friendly and sustainable.

Relevant project part-

ners

Expect the system to enable seamless collaboration, provide relia-

ble and accessible data, support integration with their existing

tools, ensure data security, and facilitate efficient project manage-

ment and decision-making.

The European Com-

mission

Delivery of high-quality systems to ensure long-lasting impacts by

providing reliable and robust performance, fostering sustainable

practices, and supporting ongoing innovation.

4. Architecture Constraints

The constraints of the Net4Cities Data Hub will be reflected in the final version. This section

shows them and if applicable, their motivation. In addition to these constraints, one must ad-

here to the Net4Cities Data Management Plan (https://syncandshare.desy.de/in-

dex.php/s/NHCMozA5zECAGjX).

4.1 Technical Constraints

This table outlines critical technical constraints for building, operating, and maintaining a robust

platform for handling instruments and modelled spatial-/temporal data using Apache technol-

ogies, Scala, Java, and C#. Each constraint is motivated by the need to ensure efficient, scal-

able, and reliable data processing and management.

https://syncandshare.desy.de/index.php/s/NHCMozA5zECAGjX
https://syncandshare.desy.de/index.php/s/NHCMozA5zECAGjX

Table 2. List of Technical Constraints (TC).

 Constraint type Constraint Description Background / motivation

Software and programming constraints

TC1 Language Interop-

erability

Ensure smooth interoper-

ability between Scala,

Java, and C# compo-

nents.

Utilizing the strengths of each

programming language to facili-

tate communication and integra-

tion, between components.

TC2 Real-Time Data

Processing

Implement real-time data

processing pipelines us-

ing Apache Kafka and

Apache Spark.

Analyzing real-time air quality

and noise sensor data to offer

insights and actionable steps.

TC3 Spatial Data Han-

dling

Efficiently manage and

query spatial data using

GeoMesa and Ge-

oServer.

Specialized handling and query-

ing capabilities are crucial for

data to support information sys-

tems (GIS) and spatial analytics.

TC4 Data Serialization Use Apache Avro for

data serialization to en-

sure efficient and com-

pact storage and trans-

mission of data.

Avro presents a compact and

swift serialization format for

managing high-volume data and

transmitting it over networks ef-

fectively.

TC5 Concurrency Man-

agement

Utilize concurrency

frameworks and libraries

in Scala, Java, and C# to

handle multiple data

streams concurrently.

Efficiently managing data

streams to ensure processing

leveraging the concurrency fea-

tures unique to each program-

ming language.

TC6 Data Ingestion Develop robust data in-

gestion pipelines using

Apache Kafka and cus-

tom ingestion scripts in

Scala/Java/C#.

Ensuring reliable and scalable

ingestion of large volumes of in-

strument and model data from

air quality instruments and

model inventories (emission, ter-

rain data etc.) and modelled air

quality concentrations and noise

decibels results.

TC7 Fault Tolerance Utilize HBase’s built-in

support for data replica-

tion and region server

failover to ensure contin-

uous availability.

Ensuring the system can re-

cover from failures without data

loss.

TC8 Schema Evolution Manage schema

changes over time using

Schema Server and

Avro’s schema evolution

features.

Supporting the evolution of data

models without causing disrup-

tions in existing applications

while ensuring both forward and

backward compatibility of data

structures.

TC9 API Development Develop RESTful APIs

for data access and ma-

nipulation using frame-

works in Java and C#.

Offering interfaces that are user

friendly for accessing data and

integrating with other systems

seamlessly.

TC10 Data Storage Store spatial and tem-

poral data in Hbase and

meta data in Post-

greSQL, ensuring opti-

mized storage for differ-

ent data types.

Using appropriate storage solu-

tions for different types of data

to ensure efficient storage, re-

trieval, and query performance

TC11 Data Querying Implement complex que-

rying capabilities using

Apache Phoenix and Ge-

oMesa.

Enabling advanced querying of

both time-series and spatial data

to support detailed analysis and

reporting.

TC12 Performance Opti-

mization

Optimize performance

through JVM tuning for

Scala/Java applications

and .NET optimizations

for C# applications.

Ensuring the applications run ef-

ficiently and handle large-scale

data processing without perfor-

mance degradation.

TC13 Security and Ac-

cess Control

Implement robust secu-

rity measures, including

encryption, authentica-

tion, and authorization.

Protecting data from unauthor-

ized access and ensuring com-

pliance with security standards

and regulations.

TC14 Scalability Design the system to

scale horizontally using

distributed processing

frameworks like Apache

Spark.

Ensuring the platform can han-

dle increasing data volumes and

user loads by scaling out across

multiple nodes.

TC15 Monitoring and

Logging

Implement comprehen-

sive monitoring and log-

ging using tools compati-

ble with Scala, Java, and

C#.

Providing visibility into the sys-

tem’s operations and perfor-

mance, facilitating troubleshoot-

ing and performance tuning.

Operating System Constraints

TC16 Deployable Deployable to Linux

server.

The application should be de-

ployable through standard

means on a Linux-based server.

TC17 Patch Manage-

ment

Regularly update the op-

erating system to apply

security patches and up-

dates.

Ensure the system remains se-

cure and up to date with the lat-

est protections and performance

improvements.

TC18 System Monitoring

and Logging

Use OS-specific tools for

logging.

Provide insights into system per-

formance and facilitate trouble-

shooting by capturing detailed

operational data.

Hardware constraints

TC19 Processing Power Ensure sufficient CPU

cores and processing

power to handle high

computational workloads.

Support intensive data pro-

cessing tasks and real-time ana-

lytics without performance deg-

radation.

TC20 Memory Provide adequate RAM

to handle large datasets

and support in-memory

processing.

Enable efficient data processing

and reduce the need for disk

I/O, enhancing performance.

TC21 Storage Capacity Ensure ample storage

capacity with fast I/O, us-

ing SSDs for critical data

operations.

Accommodate large volumes of

instrument and model data, en-

suring quick data access and re-

trieval.

TC22 Network Bandwidth Ensure high network

bandwidth and low la-

tency to support real-time

data transmission.

Facilitate efficient data inges-

tion, processing, and communi-

cation between distributed com-

ponents.

4.2 Organizational Constraints

Table 3. List of Organizational Constraints (OC).

 Constraint

type

Constraint Description Background / motivation

OC1 Budget Ensure the project stays

within the allocated budget

for development, deployment,

and maintenance.

Control costs and ensure the fi-

nancial feasibility and sustaina-

bility of the project.

OC2 Staffing Ensure availability of skilled

personnel for development,

deployment, and support.

Ensure the project has the nec-

essary human resources with

appropriate skills and expertise.

OC3 Training Provide adequate training for

staff in modern technologies

and processes.

Equip team members with the

knowledge and skills needed to

effectively use and support the

platform.

OC4 Stakeholder

Alignment

Ensure alignment with stake-

holder expectations and re-

quirements.

Maintain clear communication

and agreement with stakehold-

ers to ensure project goals are

met.

OC5 Change Man-

agement

Implement robust change

management processes to

handle updates and new re-

quirements.

Ensure smooth transitions and

minimize disruptions when

changes are made to the system

or processes.

OC6 Governance Implement proper govern-

ance structures to oversee

project progress, project risk

and decision-making.

Ensure accountability, transpar-

ency, and strategic alignment

throughout the project lifecycle.

4.3 Legal Constraints

Table 4. List of Legal Constraints (LC).

 Constraint

type

Constraint Description Background / motivation

LC1

Data Privacy

Check all data processing

steps for general data protec-

tion regulation (GDPR) com-

pliance.

Ensure that all legitimate inter-

ests of the actors involved re-

garding data privacy and security

are met.

LC 2 Licenses Check all hardware and soft-

ware components involved

about their respective license

models.

Ensure license-compliant opera-

tion of the entire system, consid-

ering the available budget, if

necessary, even beyond the pro-

ject term.

LC3 Intellectual

Property

Rights

Consideration of the interests

of project partners from the

private sector with regard to

non-freely available software

components.

Ensuring the legally secure oper-

ation of such components in the

project context.

5. System Scope and Context

This chapter describes the environment and context of the Net4Cities Data Hub, in other

words, who will use the system, and which other systems Net4Cities Data Hub depends on.

5.1 Business Context

Error! Reference source not found. illustrates the Net4Cities Data Hub in a business context.

The Net4Cities Data Hub aims to combine data sources and analytical models to offer insight

into urban environmental conditions. This integration supports decision-making and boosts

public awareness by providing targeted insights, for researchers, policymakers and the public.

Figure 3. Net4Cities Data Hub in a business context.

Key Components:

1. Data Sources:

• MappAir® is Earth Sense's proprietary modeling engine designed to create air pollutant

dispersion models and maps for key pollutants. It can process diverse pollution sources

and track the dispersion and evolution of emissions. MappAir® handles various spatial

scales and temporal resolutions, offering real-time (hourly) source apportionment of

PM2.5 and NOx at a spatial resolution of up to 10 meters.

• ATMO-Street - Urban Air Quality Model: Focuses on city air quality data providing in-

depth insights into conditions at a local level.

• Noise Model System: Provides information on noise pollution levels for assessing sus-

tainability and health impacts.

• Traffic data: Generates emissions and noise data from vehicle sources serving as in-

put, for air quality and noise models.

• Air Quality Monitoring Stations: Provide real-time air quality data to ensure the system

stays updated with the most recent environmental conditions.

2. Net4Cities Studio:

• Researcher User: This platform offers advanced analytical tools and detailed data dis-

plays to assist in-depth environmental research.

• General Public: This interface is designed inform citizens about their local environmen-

tal conditions by providing information and data visualizations, thereby promoting public

awareness.

• Policy Makers: This platform provides insights and visualizations to aid evidence-based

decision making to support the design of environmental policies.

By integrating these components, the Net4Cities system, which includes the Net4Cities data

hub and Net4Cities Studio aims to create a platform that enhances understanding of urban

environmental conditions and provides valuable insights for various stakeholders, thereby con-

tributing to the development of smarter and more sustainable cities.

6. Technical Context

Figure 4. Net4Cities Data Hub in a technical context.

The diagram above illustrates the Net4Cities Data Hub in a setting presented as a layered

structure that outlines components and their interactions across four key layers: Data Inges-

tion, Data Storage, Data Processing and Querying, and Data Serving and Visualization. Here

is an overview of the interfaces and how specific domain inputs/outputs are linked to these

channels.

6.1. Data Ingestion Layer

This layer is responsible for gathering and importing data from sources into the system.

• Instrument REST API: This API interface manages data ingestion from instruments,

including devices, environmental instruments and other hardware that collects real-time

data.

• Model REST API: This API interface focuses on importing data related to models. It

can include inputs, outputs, parameters and metadata of machine learning models.

• Avro8 is a data serialization system utilizing JSON to define data schemas. It facilitates

data exchange by allowing serialization/deserialization while ensuring schema compat-

ibility over time. This feature proves beneficial in maintaining compatibility across ver-

sions of data.

• The Schema Server is responsible for managing data format schemas to maintain data

structures ensuring data integrity and compatibility across different systems.

• Apache Kafka plays a role as a distributed streaming platform for real-time data inges-

tion supporting throughput and low latency data streaming. It facilitates the collection

and transfer of volumes of data across system components.

• Apache Spark serves as an engine for data ingestion, capable of handling both real-

time and batch-processing tasks making it suitable for managing large scale datasets.

• GeoMesa is a spatial data management system that works in conjunction with Apache

Kafka to ingest information. It excels in executing queries that involve temporal dimen-

sions.

Input/Output Mapping:

• Model data flows through the Model REST API before being serialized using Avro to

optimize storage efficiency and processing speed.

• Data, from instruments is received via the Instrument REST API, managed by the

Schema Server and then sent through Apache Kafka for processing.

• Spatial and temporal data is brought in through GeoMesa, which might also utilize

Apache Kafka for real-time geospatial data streaming.

6.2. Data Storage Layer

This layer holds the received data, for processing and retrieval.

• PostgreSQL (Inventory System): A database used to store structured inventory

data. It ensures data reliability through ACID properties (Atomicity, Consistency, Iso-

lation, Durability).

• HBase: A non-relational distributed database built to manage large scale datasets.

It's well suited for storing time series data and other large datasets requiring

read/write operations.

• File-based storage: This method is employed to store file types that do not align with

database structures like large binary files, images, logs and raw data files.

Input/Output Mapping:

• Inventory data from PostgreSQL.

• Large-scale time series and vector data stored in HBase.

• Raster data types stored in a file-based system.

6.3. Data Processing and Querying Layer

This layer is responsible for handling the stored data and supporting querying processes. It

utilizes the following tools for data processing:

• Apache Spark: A framework designed for quick processing of large datasets and dis-

tributing tasks across multiple computers.

• Apache Phoenix: Acts as a SQL layer on top of HBase enabling SQL based querying

since HBase lacks SQL support. Phoenix translates HBase scan operations into SQL

commands.

• GeoMesa: Enhances the system by providing spatial query capabilities allowing que-

rying and processing of large geospatial datasets by integrating with Apache Spark and

Kafka for real-time analytics.

Input/Output Mapping:

• Data from HBase is queried using Apache Phoenix.

• Large datasets processed with Apache Spark.

• Spatio-temporal data queried and processed with GeoMesa, facilitating complex geo-

spatial analyses.

6.4. Data Serving and Visualization Layer

This layer provides interfaces for accessing processed data and tools for visualizing it.

• GeoServer: Serves geospatial data via standard web services (e.g., WMS, WFS). It

allows for sharing and visualizing geospatial data over the web, supporting a wide

range of geospatial data formats.

• Instrument Data REST-API: This API allows access to both processed and raw instru-

ment data. It provides endpoints for querying instrument data based on various param-

eters.

• Model Data REST-API: Like the Instrument Data API, this interface allows access to

model-related data, providing endpoints for querying processed and raw model data.

• Zeppelin Notebook and Jupyter Notebook: These interactive web-based notebooks

are used for data exploration and visualization15. They allow data scientists and ana-

lysts to write and execute code in real-time, visualize data, and share insights.

Input/Output Mapping:

• GeoServer serves processed geospatial data.

• Instrument and model data can be accessed via respective REST-APIs.

• Data scientists and analysts can use Zeppelin and/or Jupyter Notebooks for interactive

data analysis and visualization.

The system will efficiently process big amounts of diverse data types through well-designed

pipelines. Each layer utilizes tools and frameworks to maintain data integrity, scalability and

accessibility. This enables querying real-time processing, as well as interactive data analysis.

7. Solution Strategy

The design of the system is influenced by strategic tech choices a step-by-step breakdown

strategy and a focus on achieving scalability, performance, adaptability and dependability us-

ing open-source technology widely supported and utilized by organizations within the commu-

nity. Organizational choices like embracing methodologies and fostering skills will play a vital

role in effectively developing and maintaining the system. This methodical approach will ensure

an adaptable and scalable data processing system of managing various data formats and

providing valuable insights through advanced processing and visualization tools.

Table 5. The requirements, architectural approaches, and description.

Goal/Requirement Architectural Approach Details

Scalability
Use of distributed sys-
tems

Apache Kafka for scalable
data ingestion, HBase for
scalable data storage,
Apache Spark for distributed
data processing.

Performance
Efficient processing and
querying

Real-time data streaming with
Apache Kafka, batch and
stream processing with
Apache Spark, fast SQL-
based querying with Apache
Phoenix.

Flexibility

Diverse storage and ac-
cess methods, and sup-
port different program-
ming frameworks

File-based storage for flexible
data types, NoSQL (HBase)
for large volumes of unstruc-
tured data, REST APIs for
standardized data access.
Support Scala, Java, Python,
R and C#.

Consistency and Reli-
ability

Data serialization and
schema management

Avro for data serialization,
Schema Server for consistent
schema management,
Apache Kafka for reliable
data streaming.

Interactive Data Anal-
ysis

Use of collaborative tools
Zeppelin and Jupyter Note-
books for interactive data ex-
ploration and visualization.

Handling Spatio-Tem-
poral Data

Specialized tools
GeoMesa for spatio-temporal
data management and query-
ing.

Structured Data Stor-
age of inven-
tory/metadata

Relational database
PostgreSQL for robust and
complex query support.

Development Process Agile methodologies
Iterative development, contin-
uous improvement, and use
of collaborative tools.

Data Privacy
State-of-the-art data se-
curity and access control

SSL-encrypted traffic, token-
and/or password-based ac-
cess to REST-API.

8. Building Block View

The perspective of building blocks presents a breakdown of the system into components, like

modules, components, subsystems, interfaces, packages, libraries, frameworks, layers, parti-

tions, levels, functions, macros, operations and data structures. It also includes their depend-

encies such as relationships and connections. This view is crucial for documenting the archi-

tecture as it offers a depiction of the system’s structure and how its different parts interact.

• Modules and Components: These are self-contained units within the system that

handle functions. For example, in the data ingestion layer, there are components like

Model REST API, Instrument REST API, Avro, Schema Server, Apache Kafka,

Apache Spark Ingestion and GeoMesa.

• Subsystems: These are sections of the system that are built up of components that

work together. An example is the Data Storage Layer which comprises PostgreSQL,

HBase, and file-based storage systems.

• Interfaces: They specify the functionality of components and how they interact with

each other. For instance, the interfaces provided by REST API in the data provisioning

and visualization layers.

• Packages and Libraries: Sets of classes and interfaces bundled together for reuse

such as the libraries utilized by Apache Spark for handling data.

• Frameworks: Serve as platforms that support the structure of a system like how

Apache Kafka is used for stream processing and Apache Phoenix is employed for que-

rying HBase.

• Layers and Tiers: Represent varying levels of abstraction and separation of responsi-

bilities within a system, including stages like data ingestion, storage, processing, que-

rying and serving/visualization.

The building block perspective presents an arrangement of entities (black boxes) and detailed

entities (white boxes) along with their explanations. This form of abstraction facilitates commu-

nication with stakeholders at a level without delving into technical specifics. Visualizing the

architecture in this manner aids in managing, expanding and upkeeping the system efficiently.

The term "Black Box" refers to a higher-level component or subsystem that keeps the "under

the hood" mechanism hidden like the data ingestion layer.

On the other hand, a "White Box" provides a view of the internal structure of the black box

illustrating how specific components and modules interact and function within it. For instance,

Apache Kafka, Schema Server and REST APIs collaborate within the data ingestion layer.

This hierarchical organization helps break down the system into parts. It ensures that each

layer and component is understandable both on its own and in relation to the overall architec-

ture. This document discusses details about the context, Level 1 and Level 2 diagrams.

The context diagram (shown in Figure 5) plays a role in system architecture by offering an

overview of how a system engages with its external surroundings. It aids in defining boundaries

and scope while fostering understanding among stakeholders regarding the system’s opera-

tional environment and external dependencies. This clarity facilitates informed decision-mak-

ing and effective communication, at every stage of system development and integration.

Figure 5. The context diagram.

Level 1 is a white-box description of the entire system and a black-box description of all con-

tained building blocks, as shown in Figure 6. It serves as a central tool in system architecture

by breaking down the system into its most important subsystems or components. It effectively

highlights the important data flows and interactions between these components and illustrates

how the major building blocks (black boxes) relate to each other. This mid-level view bridges

the gap between the high-level context provided by the context diagram and the detailed de-

sign captured in the Level 2 diagram (Figure 7).

Level 2 zooms in on some of the Level 1 building blocks, as shown in Figure 7. Therefore, it

contains white-box descriptions of selected Level 1 building blocks and black-box descriptions

of the building blocks inside them. It becomes an important tool in system architecture by

providing a detailed view of individual subsystems or components. It describes the internal

structure, data flows, and complex interactions within each component.

The system is divided into layers. Building blocks to ensure it can scale be maintained effi-

ciently and process data effectively. Each layer and its components serve purposes allowing

the system to manage types of data in large quantities while maintaining performance and data

integrity. This structured method supports development simplifies issue resolution and permits

the adjustment of individual components as required.

Figure 6. The Level 1 diagram.

Figure 7. The Level 2 diagram.

8.1 Black Box Descriptions

The Model REST API handles fetching data related to models, into the system by accepting

HTTP POST requests with JSON data and providing HTTP status codes and messages in

response. While there may be concerns about scalability as data volume grows, the API prior-

itizes ensuring availability and minimal latency.

The Instrument REST API retrieves data from instruments into the system through HTTP

POST requests containing instrument data in JSON format responding with HTTP status codes

and messages. It focuses on real-time data processing. Fault tolerance acknowledges the

challenge of managing instrument types.

Avro plays a role in serializing and deserializing data working with JSON-based data schemas

to generate serialized binary information. It facilitates schema development and compact rep-

resentation of data though managing schemas remains a concern. The schema server is re-

sponsible for storing and managing data schemas handling registration requests and retrieval

responses to ensure consistency and speedy access to schemas while addressing conflicts in

schema versions.

Apache Kafka drives real-time streaming and data ingestion processes by enabling producers

to publish messages and consumers to subscribe to topics, for communication. The system

offers data processing and minimal delays. However, it encounters difficulties in managing

data streams and maintaining message sequences.

Apache Spark Ingestion deals with processing volumes of data in time and batch modes taking

in data from diverse origins and generating refined data to a storage layer. It can scale up but

handling resources efficiently and optimizing them might present challenges.

GeoMesa handles retrieval of spatial data and overseeing data streams and establishing in-

dexed. It supports complex spatial queries despite the complexities involved in dealing with

large scale geospatial data.

8.2 White Box Descriptions

Apache Spark executes data transformations, facilitates machine learning and graph pro-

cessing and interfaces with data sources. Leveraging in-memory processing for computations

Apache Spark offers APIs in Java, Scala, Python and R for data operations. Its fault tolerance

features ensure scalability making it well suited for managing data processing tasks.

Structured components of Apache Spark Ingestion encompass elements such as Spark

Streaming, Datasets and Data Frames. Spark Streaming handles the processing of data in

time while Datasets and Data Frames are in charge of managing data. Spark SQL allows for

running SQL queries on the data that is being ingested. These components work together with

Kafka for real-time data processing, HBase for storage and Schema Server for validating sche-

mas. Within Spark Streaming’s structure there is a batch processing engine that ensures fault

tolerance and seamless integration with Spark components. The micro batch engine pro-

cesses data in batches fault tolerance is maintained through checkpoints to guarantee data

reliability. It seamlessly integrates with datasets, data frames and external sources of data.

The internal architecture of GeoMesa includes features like indexes, integration with Kafka and

powerful query engines. The spatial index efficiently manages geospatial data indexes to fa-

cilitate querying, while the Kafka integration allows for real-time ingestion of information while

the query engine handles spatiotemporal queries. GeoMesa collaborates with HBase for stor-

ing data Apache Spark for processing tasks and GeoServer for serving up the processed in-

formation. The internal structure concerning indexes, within GeoMesa details how these in-

dexes are created, managed effectively, and utilized. Index creation involves the development

of indexes, while index management includes tools for maintaining and updating these in-

dexes. Using queries involves applying techniques to exploit indexes in query executions.

HBase is a distributed database tailored for handling datasets without relational structures. It

stores data in columns and offers real-time read/write access across a distributed system like

HDFS. HBase is built to expand horizontally by incorporating nodes to manage data volumes

and workloads ensuring resilience and high availability. The database supports sharding and

load balancing allowing execution of large-scale data operations. It is commonly used for stor-

ing time series data, instrument information and other substantial datasets that necessitate

access and storage capabilities.

Apache Phoenix introduces an SQL interface on top of HBase that translates SQL queries into

operations, on HBase providing SQL query functionalities. It facilitates joins and aggregations

enabling users to conduct queries on HBase data. Phoenix enhances query efficiency using

indexes facilitating retrieval and manipulation of data. It seamlessly integrates with existing

HBase setups offering users a SQL interface to interact with the underlying HBase information.

PostgreSQL, a database system, is in charge of storing organized inventory information. It

upholds data integrity by following ACID standards and facilitates queries and transactions.

This system utilizes SQL for managing and retrieving data offering support for maintaining data

integrity, indexing and handling transactions. With its availability and durability features, Post-

greSQL is well suited for applications that demand uniform data storage.

File-based storage serves as a repository for various file formats providing flexibility in storing

unstructured data. It accommodates file storage needs, offers accessibility, and management

options making it ideal for housing unstructured data like documents, images and videos. File-

based storage systems commonly integrate distributed file systems (such as HDFS) ensuring

redundancy and fault tolerance. This element guarantees that data remains easily accessible,

secure and well managed while supporting high throughput operations with integration across

data processing systems. In terms of Data Observation/Visualization capabilities, GeoServer

delivers information via web services using protocols like WMS and WFS. It empowers users

to visualize and interact with data effectively while serving as a platform for managing and

disseminating geospatial information. GeoServer offers support for data formats and seam-

lessly integrates with GeoMesa for advanced spatiotemporal queries.

The Instrument Data REST API serves as a user interface for accessing both processed and

raw instrument data allowing flexible access to instrument information with a range of query

options. It ensures the availability of data and enables real-time interaction. Similarly, the Model

Data REST API provides endpoints to retrieve model inputs, outputs and metadata making it

simple to access model data while facilitating integration with systems. Both APIs prioritize

reliable data accessibility while ensuring availability and scalability.

Zeppelin Notebook and Jupyter Notebook are both web-based platforms designed for explor-

ing and visualizing data. Users can write code, execute it, visualize the results, and share

findings in a space that complies with data protection regulations. These notebooks support

different programming languages and offer extensive visualization libraries to promote collab-

oration among data scientists and analysts. They are compatible with data sources and pro-

cessing frameworks and can be used for conducting comprehensive data analysis and visual-

ization tasks.

9. Runtime View

The system’s real-time perspective offers a view that focuses on how different parts interact

and communicate while tasks are being carried out. During operations, the system goes

through stages such as data input, storage, processing, querying and delivery with multiple

components collaborating to handle and respond to the data.

9.1 Data Ingestion Phase

In the data input phase, various sources feed information into the system. For instance, the

model data and the input data for the model are sourced to be sent to the model REST API. It

is serialized using Avro for data formatting and schema compatibility. Instrument data is re-

ceived through the instrument REST API with schema management handled by the schema

server to maintain data structures. Apache Kafka serves as a core component for real-time

data streaming facilitating the transfer of instrument and model information across the system.

GeoMesa manages data input and leverages Kafka for geospatial streaming. This phase en-

sures that all incoming data is correctly formatted, serialized and prepared for processing.

9.2 Data Storage Phase

Following ingestion, the processed information is directed to a storage solution. Structured

inventory details (metadata) are stored in PostgreSQL—a database known for ensuring data

integrity and supporting queries. Large amounts of time series and vector data are saved in

HBase, a distributed database designed for handling datasets without relationships. Raster

data and various file formats are stored in a file-based storage system indexed using PostGIS.

This step ensures that all data is securely stored and can be easily processed and queried.

9.3 Data Processing and Querying Phase

In the phase of processing data, Apache Spark acts as an engine for managing extensive data

processing tasks. Spark handles both batch and real-time data carrying out transformations

and aggregations. For queries, Apache Phoenix adds a SQL layer on top of HBase to convert

SQL queries into HBase operations enabling retrieval of data using SQL syntax. GeoMesa

further enriches query capabilities by providing query functions for datasets. This phase guar-

antees processing of data for gaining insights through interrogation.

9.4 Data Serving and Visualization Phase

Data can be accessed and visualized via different interfaces and tools. GeoServer serves in-

formation through web services allowing users to visualize and interact with maps and spatial

information. The Instrument Data REST API and Model Data REST API offer endpoints to

access processed instrument and model data respectively. Interactive notebooks, like Zeppelin

and Jupyter allow data scientists to analyze, visualize, write and run code in real-time. This

phase ensures that end users can efficiently access, analyze and visualize data.

9.5 Sequence of Processes

In this system, several key scenarios can be visualized through sequence diagrams. Sequence

diagrams illustrate the interactions between objects or components in a sequential manner and

show the flow of messages and data over time (Figure 8).

9.5.1 Ingesting Instrument Data

In this scenario (refer to Figure 8), the instrument is the data source and is transmitting data to

the system. The process commences when the instrument device sends an HTTP request to

the instrument REST API with both the instrument data and its schema. Upon receiving this

data, the instrument REST API promptly validates it against the schema provided by the

schema server. If the instrument data does not adhere to the data schema, the schema server

rejects it ensuring that only valid data is processed.

Following validation, the data undergoes serialization using Avro. An Avro dataset comprises

instrument data and its schema creating a concise and efficient transmission format. This se-

rialized information is then sent to an Apache Kafka topic for real-time streaming processing.

Apache Kafka plays a role in this setup by streaming verified and serialized instrument data to

consumers for further processing and analysis. This mechanism guarantees a dependable

transfer of instrument data from producers to processing components within the system.

Figure 8. The sequence diagram for the Kafka producer for instrument data.

9.5.2 Ingesting Inventory Data and Storing

In this scenario (refer to Figure 9) the process of saving inventory information starts when the

data is transmitted to the model REST API through an HTTP request. The model REST API

verifies the inventory data to make sure it follows a format. Once confirmed, the data is trans-

formed into Avro, which compacts both the data and its structure into a compressed form, for

storage and transfer. The compacted inventory information is then saved in PostgreSQL. Post-

greSQL organizes this information for retrieval and ensures its integrity. This series of steps

guarantees that the inventory details are accurately captured, validated and stored in a manner

that facilitates access and analysis.

Figure 9. The sequence diagram for the Kafka producer for inventory data and persistence.

9.5.3 Persistence of Spatio-temporal Data and Quality Control

In this scenario illustrated in Figure 10 and Figure 11 Apache Kafka plays a role, within the

system by transmitting validated and serialized instrument observation data to recipients for

further analysis. This facilitates a dependable flow of instrument data from producers to pro-

cessing components in the system. GeoMesa collaborates with Apache Kafka to intake data

into Spark for processing. In this configuration the initial Spark Submit application functions as

both a Kafka consumer and producer. It retrieves data from Kafka at intervals of 10 seconds,

processes it, and stores the details in HBase. Instrument information requiring quality assur-

ance is returned to Kafka for consumption by the Spark application, establishing a pipeline for

processing. The second Spark Submit application operates as a Kafka consumer for quality

control (QC). It also retrieves data periodically from Kafka every 10 seconds. Executes QC

tasks such as applying QC flags on the data. Following processing, it updates the modified QC

flags into HBase. This methodical approach ensures that data is not just captured and stored

but is also meticulously reviewed and tagged with quality indicators thus upholding data integ-

rity throughout the system.

Figure 10. The sequence diagram for data pipeline #1 for incoming data storage.

Figure 11. The sequence diagram for data pipeline #2 for quality control.

9.5.4 Persistence of RASTER Spatio-temporal RASTER Data and Quality Control

The results of the air quality and noise models are provided as GeoTiff files according to the

OCG GeoTIFF standard (https://www.ogc.org/standard/geotiff/). Net4Cities Data Hub provides

a storage and access solution based on PostGIS and GeoServer using the ImageMosaic

plugin. In this context, a mosaic is a collection of raster images combined into a single dataset.

This is useful for managing and visualizing large datasets covering wide geographic areas or

multi-dimensional tiles.

The following sequence diagram (Figure 12) shows how the main process of saving a raster

file to the Net4Cities datacenter works. Although authentication and authorization are not in-

cluded in the diagram, they are part of the implemented system (token-based). In addition to

load balancing, the interaction takes place between three components: the REST API, PostGIS

(a plugin in PostgreSQL for working with spatial data), and the GeoServers REST API. The

modeling system sends its GeoTIFF files to the REST API, which PostGIS uses as a DBMS

to index the ImageMosaic. In addition, a ZIP file containing the GeoTIFF files and datastore

properties is sent to the GeoServer via the REST API so that the new image layer is available.

For styling purposes (e.g., colors, labels), the system assigns an SLD and an XML-based style

layer descriptor to the image layer, making it ready for visualization.

Figure 12. The sequence diagram for the data for incoming raster data storage.

In all these situations the system leverages technologies and frameworks to ensure perfor-

mance, scalability and data integrity. Avros efficient serialization and schema development

features play a role, in maintaining data compatibility. The distributed streaming platform of-

fered by Apache Kafka delivers real-time data processing capabilities while guaranteeing la-

tency and high throughput. Apache Sparks robust processing engine facilitates large-scale

data transformations and analyses. GeoMesa seamlessly integrates functionalities with these

components enhancing the system’s capability to process and query geospatial datasets.

PostgreSQL and HBase serve as scalable storage solutions each tailored for data types and

access patterns. Lastly, GeoServer, along with platforms like Zeppelin and Jupyter, provides

user interfaces for accessing, visualizing data and supporting a wide array of analytical tasks.

10. Deployment

Software systems rely on underlying hardware infrastructure to run effectively. Understanding

this infrastructure is critical because it directly affects system performance and scalability. The

deployed infrastructure supports:

• Source code repository and CI/CD pipelines will be done using GitLab. The deployment

will be into multiple environments: development, testing, staging, and production.

• Utilization of Proxmox cluster for VM deployment, facilitating flexible resource alloca-

tion.

• Use of GlusterFS for storage in select environments, enhancing data reliability and ac-

cess speed.

• VLAN-based network architecture ensuring direct communication between compo-

nents.

• Planned scalability through additional Proxmox hosts, supporting both vertical and hor-

izontal scaling strategies.

10.1 Identify Infrastructure Elements

Geographical Locations: All components are centralized at NILU’s local data center in

Kjeller, Norway.

Environments:

• Technical test: for testing Ansible scripts, etc.

• Dev: for testing newer versions of components and code.

• Stage: for testing what was in dev, but with the same dataset as for prod.

• Prod: for running the solution with the production dataset.

Computers/VMs/Containers:

• All components (such as HADOOP/YARN, HBASE, Confluent) will run in VMs on our

Proxmox cluster.

• ZooKeeper also runs on servers with HADOOP/YARN.

Network Topologies: Components are on a single VLAN, communicating directly.

Other Infrastructure Elements:

• For some environments (tt, dev), storage on separate GlusterFS instance (SSD).

• Stage may also use GlusterFS (SSD).

• Production uses SSDs directly attached to Proxmox hosts, with VMs having dedicated

storage on specific hosts.

10.2 Identify Software Elements

Identify Software Components:

• GlusterFS, HADOOP/YARN, HBASE, Confluent (Schema Registry, Kafka, Kafka

REST).

• Front-end components like APIs managed by NILU DIGITAL.

Specify Deployment Units: Most components are downloaded as tar.gz files for Linux and

run directly from extracted folders.

Deployment Environment Mapping: Components are deployed across all environments.

Deployment Configuration: Configuration details are handled by NILU DIGITAL.

10.3 Document the Mapping

Deployment Scripts and Automation:

• Ansible used to deploy HADOOP/YARN, HBASE, Confluent components.

• Ansible Semaphore manages Ansible scripts.

Consider Non-Functional Requirements:

• Performance: Testing is required once the environment is operational with production

data.

• Scalability: Vertical scaling possible; horizontal scaling limited due to shared Proxmox

cluster, though more hosts are being added.

• Security: Components communicate with SSL; Kerberos used for internal component

communication (e.g., HADOOP/YARN).

• Maintainability: Updates challenging due to version compatibility; monitoring by Ic-

inga/Zabbix combination.

11. Cross-cutting Concepts

This section outlines the principles, rules and potential solutions that are relevant to various

aspects of the system. These overarching concepts help maintain consistency, uniformity and

alignment with the vision for the system. They ensure that the system is developed and exe-

cuted in a cohesive manner. Adhering to these guiding principles results in a level of unity

within the system enhancing its reliability, ease of maintenance and expandability.

In the described data system architecture, several overarching concepts are discussed that

are crucial across levels enhancing capabilities and ensuring smooth data operation and man-

agement. These key concepts include (illustrated in Figure 13):

• Data Serialization and Schema Management

• Real-Time Data Processing and Streaming

• Distributed Computing and Scalability

• Geospatial and Temporal Data Management

• Interactive Data Exploration and Visualization

Figure 13. The crosscutting concepts.

11.1 Data Serialization and Schema Management

Using Avro for data serialization and managing schemas through a schema server are archi-

tectural concepts. Avro helps optimize data exchange by converting data into a form, which

enhances storage and transmission efficiency while ensuring compatibility with evolving sche-

mas. This is crucial in scenarios where data structures may change over time without disrupt-

ing existing data pipelines. The schema server plays a role in maintaining consistency by han-

dling and versioning schemas for various data formats thereby enhancing data integrity and

interoperability across different sources and storage systems.

11.2 Real-Time Data Processing and Streaming

In the realm of real-time data processing and streaming, Apache Kafka acts as the foundation

for ingesting and streaming data within the architecture. It facilitates throughput low latency

data transfer among distributed systems. It enables continuous flow of information from diverse

sources to the processing layer. This setup ensures that the system can effectively handle

streaming data, offer time capabilities and make timely decisions based on up-to-date infor-

mation. Integrating Kafka with tools, like Apache Spark and GeoMesa enhances the architec-

ture’s capacity to process and analyze data streams efficiently while adapting to changing vol-

umes and speeds of information.

11.3 Distributed Computing and Scalability

When it comes to distributed computing and scalability Apache Spark serves as a core element

that exemplifies these concepts effectively.

Spark has the capability to efficiently manage datasets and handle computations by distributing

tasks across multiple nodes. Its versatility in working with both batch and real-time processing

modes offers flexibility for handling data types and workloads. This approach boosts perfor-

mance. It also enables scalability by expanding horizontally as data volume increases. When

coupled with storage solutions like HBase and PostgreSQL, Spark streamlines data retrieval

and processing, ensuring a framework for the entire system.

11.4 Geospatial and Temporal Data Management

In managing temporal data, GeoMesa provides features tailored for spatial-temporal data man-

agement, which is particularly crucial in applications necessitating geospatial analysis and vis-

ualization. By integrating with Apache Kafka and other data processing frameworks, GeoMesa

facilitates the storage, retrieval and querying of geospatial datasets. This functionality caters

to applications such as monitoring, logistics and urban planning that rely on understanding

spatial relationships and temporal patterns. With its indexing capabilities and query optimiza-

tion features, GeoMesa strengthens the system’s capacity to handle intricate geospatial que-

ries while enabling profound data-driven insights for decision-making support.

11.5 Interactive Data Exploration and Visualization

For exploration of data visualization tools like Zeppelin Notebook and Jupyter Notebook add a

layer of interactivity to the system by enabling analysis of datasets. These online notebooks

create a space for data scientists and analysts to investigate data, execute algorithms and

visualize outcomes in real-time. This idea promotes a process of data exploration and hypoth-

esis testing, resulting in understanding and better communication of findings within the organ-

ization. By integrating GeoServer and REST API, these notebooks enable users to interact

directly with processed data supporting agile decision-making processes that are well-in-

formed.

These overarching concepts form the foundation of the system architecture being discussed,

enhancing its abilities and ensuring its efficiency in handling types of data. They facilitate real-

time processing, geospatial analysis, interactive data exploration and visualization in a web-

based solution. By leveraging these concepts organizations can construct data infrastructures

that not only handle data effectively but also uncover actionable insights. This drives innovation

and strategic decision-making across domains.

12. Quality Requirements

Quality requirements define the non-functional characteristics that a system must have to meet

user expectations and operational requirements. In the described data system architecture,

several important quality requirements ensure its effectiveness, reliability, performance, and

maintainability.

12.1 Quality Tree

A quality tree represents the hierarchy of functional requirements or quality attributes in a sys-

tem outlining how these attributes are organized and prioritized to achieve overall system ob-

jectives.

12.1.1 Performance

The system needs to handle data volumes with minimal latency for real-time data streams. It

should be capable of scaling to support increasing data loads and user needs without sacrific-

ing performance. Moreover, interactive elements like REST APIs and data visualization tools

should deliver responses promptly to ensure user satisfaction.

12.1.2 Reliability

Components such as Apache Kafka, HBase and PostgreSQL must exhibit resilience to guar-

antee data availability and consistency. Avro’s serialization and schema management are es-

sential for maintaining data coherence and ensuring compatibility across system components

and versions.

12.1.3 Security

Ensuring the transmission and storage of information is crucial for compliance with regulations

like GDPR. Implementing role-based access control for data APIs and interactive notebooks

is necessary to prevent access and safeguard data confidentiality.

12.1.4 Maintainability

The architecture should be modularly designed with documentation for maintenance, updates

and expansions. Keeping track of the performance of system components, like Kafka and

Spark, through logging and monitoring is crucial for monitoring performance metrics identifying

irregularities and aiding in problem solving.

12.1.5 Usability

When it comes to usability, having user-friendly interfaces such as Zeppelin and Jupyter note-

books is key for data exploration and visualization. Providing documentation and tutorials to

both users and administrators is essential for system integration and operation.

12.2 Quality Scenarios

12.2.1 Scenario 1: High Throughput Data Ingestion

The system needs to handle 10,000 data points per second from instrument APIs with mini-

mum latency (less than 100 milliseconds) when ingesting data into Kafka. Monitoring the av-

erage time taken to ingest and process instrument data will ensure it meets the latency stand-

ards. Load testing tools will be used to simulate peak data loads to test if Kafka and Spark can

maintain the throughput without performance issues.

12.2.2 Scenario 2: Real-Time Query Response

Real-time query responses for GeoMesa spatial data queries should deliver results within one

second for queries. Performance testing, under load conditions, will be conducted to validate

if GeoMesa queries meet the latency requirements. Monitoring tools integrated with GeoMesa

will be used to verify response times during testing.

12.2.3 Scenario 3: Scalability

The system needs to be able to grow to handle a 50% increase in data volume within six

months without needing changes in its design. We will check this by monitoring how the system

uses its resources (like CPU, memory, disk I/O) during times and predicting how well it can

grow based on trends. To confirm this, we will do stress tests to see if tools like Kafka, Spark

and storage systems can handle data without losing performance.

12.2.4 Scenario 4: System Monitoring and Maintenance

Centralized logging and monitoring must be implemented for Kafka, Spark, and database sys-

tems to proactively detect and respond to system failures. This requirement will be measured

by setting up monitoring dashboards to track system performance metrics such as throughput,

latency, and error rates in real-time. Verification will involve conducting incident response drills

to test the effectiveness of monitoring alerts and procedures for handling system failures and

performance bottlenecks.

13. Risks and Technical Debts

Every intricate data system structure comes with risks that could affect its operation, efficiency

and overall dependability. By pinpointing these, risks strategies can be put in place to lessen

disruptions.

In the distributed computing environment, utilizing tools such as Apache Kafka and HBase

introduces significant challenges related to data consistency and integrity. Due to the dis-

tributed nature of such systems, there is an enhanced risk of encountering issues with data

consistency, particularly when managing large volumes of data or during system failures. In-

accurate data can impact negatively on business functions and diminish user confidence in the

system. To address such risks effectively, it is crucial to establish robust data validation mech-

anisms between Kafka producers and consumers, utilize error-handling capabilities strategi-

cally, and routinely verify data integrity through automated checks alongside manual validation

procedures.

Considering the scalability and performance, tools, such as Apache Spark and Kafka are

inherently designed to handle scalability efficiently. However, sudden increase in data volumes

or unforeseen spikes in user activity can still strain system resources. This can lead to a decline

in performance, resulting in longer processing times for data, slower responses to queries, and

potential system failures during peak usage periods. To mitigate these risks effectively, it is

essential to conduct thorough load testing to simulate various scalability scenarios, optimize

cluster configurations for resource efficiency, and implement auto-scaling features to dynami-

cally adjust resources based on real-time workload demands.

Another major concern is security vulnerabilities due to the system’s data inputs and outputs.

These aspects expose the system to security risks such as access, data breaches and denial

of service attacks. Breaches could lead to data leaks, loss of information, noncompliance with

regulations and damage to reputation. Strategies for mitigating these risks involve implement-

ing authentication and authorization mechanisms for API endpoints and data storage systems,

regularly updating software components, conducting security audits and penetration tests as

well as ensuring encryption for data in transit and at rest.

13.1 Technical Debts in the System Description

The section on Technical Debts in the System Description discusses how technical debt accu-

mulates from incomplete design choices made during the development and implementation

phases. These decisions can result in lower system performance, maintenance challenges

and delays in feature enhancements.

Architectural complexity serves as a type of debt that emerges from integrating various tech-

nologies, like Apache Kafka, Spark, GeoMesa and different storage solutions. The intricacy of

these situations can result in increased debt because of the connections between components

causing challenges in diagnosing and fixing issues and potentially lengthening development

phases and deployment schedules. To manage this complexity effectively, it is essential to

review the architecture, refactor code and configurations to simplify interactions and update

documentation for clarity during future maintenance and enhancements.

Issues with maintaining code and configurations also contribute to debt. Quick development

cycles and evolving requirements often lead to compromises on code quality and configuration

management practices resulting in an accumulation of debt over time. Source-codes, outdated

configurations and dependencies on libraries can compromise the stability, scalability and

maintainability of your system. To address this issue, it is crucial to embrace integration and

delivery (CI/CD) practices for automating testing and deployment processes conduct code re-

views prioritize refactoring initiatives and keep documentation up to date.

Furthermore, data governance issues pose risks related to debt. Issues like inconsistent

schema management or insufficient data validation procedures can lead to debt associated

with data integrity and compliance. Noncompliance with regulations (such as GDPR) or internal

data standards may result in liabilities, data breaches or disruptions in operations. To tackle

this issue, it is crucial to set up defined data management rules and protocols, automate data

validation tasks when feasible carry out checks to uphold standards, and offer continuous train-

ing to individuals handling data management and oversight.

14. Glossary
Table 6. Table of key terms used in this template.

Term Description

arc42 Template we used for this document, which are used describe system

architecture related to software (https://arc42.org/overview).

Avro A data serialization system that is used for efficiently storing and trans-

ferring data, especially used within big data (https://avro.apache.org/).

C# Object-oriented programming language developed by Microsoft and is

part of the .NET framework (https://dotnet.microsoft.com/en-us/lan-

guages/csharp).

GeoMesa An open-source large-scale geospatial software package

(https://www.geomesa.org/)

GeoServer An open-source server for sharing geospatial data (https://ge-

oserver.org/)

GeoTIFF A file format for storing georeferenced raster imagery.

GlusterFS A scalable network filesystem.

HADOOP A framework for distributed storage and processing of large data sets

(https://hadoop.apache.org/)

Hbase An open-source, distributed database (https://hbase.apache.org/)

HTTP GET An HTTP request method is used to retrieve data from a server.

HTTP POST An HTTP request method is used to send data to a server.

Icinga An open-source monitoring system (https://icinga.com/)

ImageMosaic A tool for creating mosaics of geospatial imagery.

Java A high-level programming language used for building applications

https://www.java.com/en/)

Jupyter Note-

book

An open-source web application for creating and sharing documents

with runtime code and visualizations (https://jupyter.org)

Kafka A distributed event streaming platform (https://kafka.apache.org/)

Kerberos A network authentication protocol (https://web.mit.edu/kerberos/)

Phoenix An open-source SQL query engine for Hbase (https://phoe-

nix.apache.org/)

PostGIS A spatial database plugin for PostgreSQL (https://postgis.net/)

PostgreSQL An open-source relational database management system

(https://www.postgresql.org/)

Proxmox A server virtualization management platform (https://www.prox-

mox.com/)

Scala A programming language (https://www.scala-lang.org/)

Schema Server A server that manages schemas for Avro data.

Spark A big data processing engine

YARN A resource management layer for Hadoop (https://ha-

doop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-

site/YARN.html)

Zabbix An open-source monitoring software (https://www.zabbix.com/)

Zeppelin Note-

book

An open-source web application for creating and sharing documents

with runtime code and visualizations (https://zeppelin.apache.org/)

ZooKeeper A centralized service for maintaining configuration information for dis-

tributed synchronization (https://zookeeper.apache.org/)

Conclusions

The design of the Net4Cities Data Hub effectively achieves its objectives by creating a scalable

and flexible system capable of retrieving, processing, storing and making the relevant data

from the Net4Cities project accessible to a wide range of stakeholders. The layered approach

to data ingestion, storage, processing and delivery ensures that data integrity and accessibility

are maintained consistently. This architecture not only meets the requirements of the Net4Cit-

ies project but also establishes a solid groundwork for future improvements and integrations.

The results of this output exhibit an organized strategy for managing and analyzing data, which

is essential for understanding urban environmental conditions and providing valuable insights

for stakeholders. As the project advances, the documented architectural choices will support

development and upkeep, ensuring that the system stays in line with evolving needs. Subse-

quent tasks will expand on this framework by enhancing data processing capabilities, improv-

ing interfaces and incorporating data sources to further advance the objectives of the Net4Cit-

ies project in fostering more sustainable urban environments.

Acknowledgment

We acknowledge the use of ChatGPT-4o (https://chat.openai.com/) in the following way:

(i) to find relevant academic literature to help us to understand the arguments

(ii) to refine the academic language.

Acronyms

Table 7. Table of acronyms used in this template.

Acronym Meaning

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

BC Black Carbon, which is a component of particulate matter (PM).

CH4 Methane

CI/CD
Continuous Integration/Continuous Deployment, a practice for automating software
development and deployment.

CO2 Carbon Dioxide

GDPR General Data Protection Regulation

GHG Greenhouse Gases

GIS Geographic Information Systems

HDFS Hadoop Distributed File System

HTTP Hypertext Transfer Protocol, the foundation of data communication on the web.

JSON JavaScript Object Notation, a lightweight data interchange format.

LDSA Lung-depositing surface area of particles.

LULC Land Use and Land Cover

LULC Land Use/Land Cover, a classification of land based on its use and vegetation.

N2O Nitrous Oxide

https://chat.openai.com/

N4C Net4Cities

NH3 Ammonia

PM10 Particulate Matter 10 micrometers or less in diameter.

PNC
Particle Number Concentration, a measure of the number of particles in a given vol-
ume of air.

QC Quality Control

QM Quality Management

RDD Resilient Distributed Dataset, a fundamental data structure of Apache Spark.

REST API
Representational State Transfer API and is a set of guidelines for building scalable
web services.

SLD Styled Layer Descriptor, an XML schema for styling of maps

SLM Sound Level Meter

SLM Service Level Management, a practice for managing service levels in IT.

SQL Structured Query Language, a standard language for managing relational databases.

SSD Solid State Drive, a storage device.

SSL Secure Sockets Layer, a protocol for securing communications on the internet.

TLS Transport Layer Security, a protocol for securing communications on the internet.

VLAN Virtual Local Area Network

VM Virtual Machine

VOC Volatile Organic Compounds

WFS Web Feature Service

WMS Web Map Service

XML
Extensible Markup Language is a markup language and file format for storage and
transferring data.

References

1. Starke, G., Simons, M., Zörner, S., & Müller, R. D. (2019). arc42 by Example: Software

architecture documentation in practice. Packt Publishing Ltd.

2. European Commission, Directorate-General for Environment, Nagl, C., Bleeker, A.,

Ntziachristos, L. et al., Systematic assessment of monitoring of other air pollutants not

covered under Directives 2004/107/EC and 2008/50/EC – With a focus on ultrafine

particles, black carbon/ elemental carbon, ammonia and methane in ambient air, Pub-

lications Office of the European Union, 2022, https://data.europa.eu/doi/10.2779/691266

3. Garrido Salcedo, J. C., Mosquera Lareo, B. M., Echarte Puy, J., & Sanz Pozo, R. (2019,

September). Management Noise Network of Madrid City Council. In INTER-NOISE and

NOISE-CON Congress and Conference Proceedings (Vol. 259, No. 8, pp. 1700-1711).

Institute of Noise Control Engineering.

4. Giovannini, L., Ferrero, E., Karl, T., Rotach, M. W., Staquet, C., Trini Castelli, S., &

Zardi, D. (2020). Atmospheric pollutant dispersion over complex terrain: Challenges

and needs for improving air quality measurements and modeling. Atmosphere, 11(6),

646.

5. Guo, D.; Onstein, E. State-of-the-Art Geospatial Information Processing in NoSQL Da-

tabases. ISPRS Int. J. Geo-Inf. 2020, 9, 331. https://doi.org/10.3390/ijgi9050331

6. Raptis, T.P.; Cicconetti, C.; Falelakis, M.; Kalogiannis, G.; Kanellos, T.; Lobo, T.P. En-

gineering Resource-Efficient Data Management for Smart Cities with Apache

Kafka. Future Internet 2023, 15, 43. https://doi.org/10.3390/fi15020043

7. Humphreys, E. (2008). Information security management standards: Compliance, gov-

ernance and risk management. information security technical report, 13(4), 247-255.

8. Vohra, D., & Vohra, D. (2016). Apache avro. Practical Hadoop Ecosystem: A Definitive

Guide to Hadoop-Related Frameworks and Tools, 303-323.

9. Obe, R. O., & Hsu, L. S. (2017). PostgreSQL: up and running: a practical guide to the

advanced open source database. " O'Reilly Media, Inc.".

10. Vora, M. N. (2011, December). Hadoop-HBase for large-scale data. In Proceedings of

2011 International Conference on Computer Science and Network Technology (Vol. 1,

pp. 601-605). IEEE.

11. Albrecht, J. (2017). Using Web-Based Notebooks For Blended-Learning In Computer

Science. In EDULEARN17 Proceedings (pp. 5714-5720). IATED.

12. Srivastava, A., Bhardwaj, S., & Saraswat, S. (2017, May). SCRUM model for agile

methodology. In 2017 International Conference on Computing, Communication and

Automation (ICCCA) (pp. 864-869). IEEE.

https://data.europa.eu/doi/10.2779/691266

