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Executive Summary 

This document outlines the proposed architecture aiming to unify all parties involved and 

streamline the development process effectively. Its main objectives include offering 

developers’ guidance and providing a framework for stakeholders to assess decisions and 

documenting key architectural choices for transparency and accountability. The document 

covers a scope, including a high-level overview of the intended system architecture and 

detailed descriptions of its components. It also provides a description of the framework 

employed. 

The Net4Cities Data Hub is specifically designed to manage and analyze air pollution and 

noise-related data from sources such as urban air quality models, noise model systems, traffic 

data, and air quality and noise monitoring stations. This comprehensive platform integrates 

diverse data streams with advanced analytical models to deliver valuable insights into urban 

environmental dynamics. The system is structured into four layers: Data Ingestion, Data 

Storage, Data Processing and Querying, and Data Serving and Visualization. Each layer 

employs cutting-edge technologies to ensure data integrity, consistency, and accessibility. By 

bringing these elements together, the platform empowers decision-makers, enhances public 

awareness, and provides essential insights to researchers, policymakers, and citizens, 

facilitating informed actions for sustainable urban development. 

Key technologies that are utilized include Kafka for real-time data streaming, Avro, for data 

serialization, Schema Server for managing data formats, Spark for processing large scale data, 

PostgreSQL for storing inventory data (metadata) and HBase for temporal and spatial 

observation data and model related data.  

The operation of the system involves a series of steps starting with data ingestion. During this 

phase data is gathered from sources, validated and serialized. Subsequently this information 

is stored in storage solutions, processed using tools, like Apache Spark and GeoMesa before 

being accessed through a range of interfaces and visualization tools. This architectural 

approach ensures handling of data types on a large scale facilitating complex queries, real-

time processing and interactive analysis of the data.  



 

 

1. Introduction and Goals 

Welcome to the Architecture Design Document for the Net4Cities Data Hub. This document 

acts as a blueprint of the systems architecture offering consortium members and stakeholders 

an overview and insight into the architectural strategies and decisions that will drive the devel-

opment of the Net4Cities Data Hub. The main goal of this document is to ensure coherence 

among project contributors and facilitate communication throughout the development phase. 

1.2 Purpose 

The Architecture Design Document serves three purposes: 

• Guidance: It provides structured descriptions of the system architecture to guide develop-

ment teams outlining components, relationships and dynamic interactions. This includes 

defining software layers, subsystems, interfaces and dependencies. 

• Evaluation: It establishes a framework for stakeholders to evaluate choices against re-

quirements and constraints, ensuring that the architecture aligns with all specified business 

and technical objectives. 

• Documentation: It documents decisions impacting the system providing argumentation, 

for choices made to promote clarity and accountability. 

1.3 Scope 

This document outlines the design of the system covering: 

• Overview of the components and how they interact. 

• Detailed description of each component’s functions, capabilities and interactions. 

• Specifications of the technology stack including platforms, programming languages and 

tools used. 

The target audience includes: 

• Developers working on Net4Cities Data Hub: To understand the system structure and their 

roles in implementing and integrating components. 

• Quality Assurance Teams: To develop testing strategies based on the design and inter-

connections between components. 

• Project Managers and Decision Makers: To monitor project progress and make informed 

decisions on resource allocation and risk management. 

• External stakeholders: Such as clients and partners who require an understanding of the 

system’s architecture for integration and evaluation purposes. 

1.4 Structure of the Document 

This document is divided into sections: 

• Introduction: Providing an overview of the document’s purpose, scope and target audi-

ence. 

• Architectural Representation: Describing the model and design utilized. 

• System Architecture: Offering an analysis of system components, their interconnec-

tions and the surrounding environment. 

• Architectural Goals and Constraints: Clarifying the objectives and the limitations influ-

encing the system design. 

• Design Decisions: Summarizing choices made and explaining the reasoning behind 

them. 



 

 

• Quality Scenarios: Outlining specifications for quality attributes such as scalability, re-

liability and maintainability. 

• Appendices and References: Including information that supports decisions and refer-

ences to external documents.  

This document builds upon the open source Arc42 template1, for documenting software and 

system architectures while adhering to the terminology and guidelines outlined in the standard 

ISO/IEC/IEEE 42010:2022. 

2. Requirements Overview 

The overall requirement of the Net4Cities Data Hub is to receive, store, process, provide and 

handle air pollution and noise related data, including emission inventories and metadata. The 

simplified concept diagram below (see Figure 1) illustrates the aggregate data requirement, 

data flow and end users. 

 

Figure 1: Net4Cities digital infrastructure concept diagram. 

In the overview of requirements, we have emphasized two areas: data from measurements 

and data from models. These categories consist of subdivisions related to air pollution data, 

noise data and traffic data. The focus is to ensure quality control and integrating APIs for ma-

chine to machine (M2M) data transmission. 

2.1 Measurement Data 

2.1.1 Air Pollution measurement data  

• Instrument Observation: Instruments are set up to monitor both (regulated) air pollu-

tants and greenhouse gases, such as particulate matter (PM), nitrous oxide (N2O), me-

thane (CH4), carbon dioxide (CO2) and volatile organic compounds (VOCs), and emerg-

ing pollutants2 such as particle number concentration (PNC), Lung Deposited Surface 

Area (LDSA), ammonia (NH3), and black carbon (BC). These instruments provide real-

time data with high temporal resolution, or aggregated when the sampling technique 

does not allow such resolution (e.g., ammonia will be measured by passive sampling 

with monthly resolution). 



 

 

• Metadata: It includes the location coordinates of the measurements, altitude details, 

instrument identification numbers and specifics on measurement and sampling tech-

niques. 

• Quality control: A procedure to identify and correct data anomalies. This includes com-

paring data from neighboring instruments adjusting for calibration drifts and detecting 

any outliers. 

• Data storage solutions to enable retrieval based on time stamps, location or pollution 

levels. This ensures access for real-time monitoring and historical analysis purposes. 

2.1.2 Noise Measurement Data 

• General Noise Levels: Data, from an indicator register that captures noise levels across 

the spectrum (usually 20 Hz to 20 kHz)3. This information is important for understanding 

noise pollution levels in general. 

• Frequency Distribution Data: Information from the spectrum register that shows noise 

levels across frequency bands. This breakdown is crucial for identifying sources of 

noise and their effects. 

• Sound Level: Similar to the General Noise Levels and Frequency Distribution Data but 

focusing on levels that vary based on the Sound Level Meter (SLM) setup. Percentiles 

such as L90, L50, L10 describe the noise level exceeded for 90%, 50% and 10% of the 

measurement period respectively. These values are useful for understanding how 

noise levels vary with high temporal resolution.  

• Metadata: Includes location coordinates of measurements, altitude, instrument ID and 

details of Sound Level Meter (SLM) configuration/setup data. This involves specifics 

about microphone sensitivity, frequency weighting (e.g., A,C,Z-weighting) and time 

weighting (fast slow, impulse), during measurements. 

• Ancillary and Compliance Data (markers): Records of time points highlighted as im-

portant during the measurement process, which could signal occurrences or disturb-

ances needing additional quality control.  

Given the need for efficient data storage, we propose storing noise level data at 1-minute in-

tervals. This method provides the granularity necessary for detailed analysis. Longer-term in-

dicators, such as hourly averages, can then be derived from these 1-minute values as required. 

This approach ensures optimal use of storage by maintaining detailed data only at the smallest 

necessary interval. Alternatively, we could consider storing longer-term aggregates directly, 

such as 1-hour averages, which might reduce the complexity of on-demand calculations but at 

the cost of losing finer granularity. We need to evaluate whether it is more efficient to store 

only 1-minute interval data and calculate longer-term indicators as needed, or if it's better to 

store these longer intervals directly for easier but less detailed access. 

 

2.1.3 Traffic Counting Data 

• Vehicle Numbers: The count of cars passing by a given location, on a road during a 

period. This is crucial for estimating traffic emissions and noise pollution levels. 

• Vehicle Categorization: Different types of vehicles release varying amounts of emis-

sion amount and pollutant and produce different levels of noise. Data should distin-

guish between vehicle categories like motorcycles, cars, vans, buses and trucks. 

• Traffic Patterns: Details about the speed and volume of traffic. Slow-moving or idling 

traffic can lead to higher emissions per vehicle. 



 

 

• Time Sensitive Information: Data specific to time periods, such as daily and seasonal 

variations in traffic flow. This helps in understanding peak traffic times and off-peak 

times, which have implications for emission noise pollution levels. 

• Geographic Details: Location-based data where traffic counts are done. This assists 

in identifying areas with traffic that may contribute more to pollution levels. 

• Road Slopes and Design: Information on road elevations, declines and layout (e.g., 

intersections, roundabouts).  

2.2 Model Data 

The concept diagram (see Figure 2) illustrates the needed data to be stored in the Net4Cities 

Data Hub to conduct an air quality dispersion simulation, including improved source apportion-

ment, noise simulations and the storage of the output from these models. 

 

Figure 2: Net4Cities Data Hub conceptual diagram.  



 

 

2.2.1 Air Pollution Modelling Data 

Air quality dispersion modelling4 is used to calculate how air emissions are dispersed in the 

atmosphere over time and space. This type of modelling is essential for understanding the 

impact of different pollutants from various sources, such as industrial plants, traffic, house 

heating, agricultural activities, etc., on the air quality of surrounding environments4. 

There are several important data that are required to carry-out air quality dispersion modelling 

scenarios. Within the Net4Cities Data Hub, we will store traffic-related emissions data as line 

sources and industrial data as point sources. Natural emissions and other remaining sources 

that don't fit into the line or point categories are classified as area sources (e.g., as gridded 

data). Additionally, we will include transboundary/background sources and the necessary ter-

rain data. Meteorology data as wind speed and direction, temperature, humidity, and atmos-

pheric stability play a critical role in determining how pollutants travel and dilute over time. But 

due to the complexity and volume of such data, these will probably not be stored in the plat-

form, only linked. Users are encouraged to obtain meteorological data from reliable sources to 

ensure the accuracy and effectiveness of the air quality dispersion modeling.  

Line sources: Line sources are critical for modelling urban air quality because they simulate 

the continuous release of pollutants from traffic, which is often a major contributor to local air 

pollution levels. The inputs required include: 

• Coordinates of the traffic network as line paths (series of coordinates defining the path). 

• Road slopes. 

• Vehicle Speeds. 

• Traffic composition (i.e. vehicle types/categories). 

• Traffic counts (annual average daily traffic). 

• Emission Factors for different pollutants (NOx, PM10, PM2.5, SO2, etc.) and vehicle types 

(EURO, heavy, etc.). 

• For particles (PM) one also needs precipitation data for resuspension. 

• Traffic variation (weekly- and diurnal variations). 

Point Sources: These are typically single, identifiable sources of emissions that release pol-

lutants from a fixed location and known height, such as smokestacks or exhaust vents. The 

inputs required include: 

• Location: latitude, longitude, and elevation. 

• Height of the release point above ground level. 

• Exit temperature of the emissions which affects plume rise. 

• Exit velocity of the emissions which impacts plume behavior. 

• Pollutant type (NOx, PM10, PM2.5, SO2, etc.) and emission rate (e.g., grams per second). 

• Temporal profiles in emissions (weekly- and diurnal variations). 

Area Sources: These sources emit pollutants from a defined area rather than a single point. 

Examples include residential heating, agricultural fields, landfills, or small industrial sites. In-

puts needed are: 

• Coordinates of the area(s) defined as a grid(s). 

• Pollutant type (NOx, PM10, PM2.5, SO2, etc.) and emission rate (e.g., tones per year). 

• Temporal profiles in emissions (weekly and diurnal variations). 

Boundary Conditions (Transboundary Concentrations): When modeling air quality, bound-

ary conditions are critical for the model. These boundary conditions, also known as trans-

boundary concentrations, are the air masses coming into the model domain. The inputs re-

quired include: 



 

 

• Hourly concentration values of the pollutant to be modelled entering the model domain. 

For non-inert pollutants like NO2, one also needs O3, NO additional to NO2. 

Terrain Data: Terrain data is critical for air quality dispersion modeling because it significantly 

influences how air pollutants disperse in the environment8. Here are the key aspects of terrain 

data that are needed for effective modeling. The inputs required include: 

• Coordinates of the grid cells defined as a square (in the data hub this will defined as 

polygons). 

• Terrain value for each grid cell. 

• Terrain type (elevation data, Land Use and Land Cover (LULC) data, surface rough-

ness, vegetation types, etc.). 

 

In addition to these data, air quality dispersion models require several 2- and 3-dimensional 

meteorological parameters such as wind speed and wind direction, temperature, atmospheric 

stability, mixing height, relative humidity, precipitation, etc. We have decided not to store me-

teorological data in the Net4Cities Data Hub due to the challenges associated with storing such 

data and the unclear purpose of storing all this information at this stage. Therefore, meteoro-

logical data will not be described further in this architecture document. It may be useful to 

further discuss the possibility of using terrain data and meteorological data, and to consider 

their interrelated roles in diffusion models; however, that is not in the scope of this document. 

2.2.2 Noise Modelling Data 

There are several models to evaluate, through calculation methods, the environmental noise 

levels produced by the main noise sources (traffic, railway, industry, airports) existing in a zone. 

The European Directive 2002/49/EC states that the method that must be used in Europe is 

CNOSSOS-EU. Proper noise modeling requires a comprehensive set of data starting with 

source data, which includes the type, location, and power levels of the noise source. This data 

should detail the sound power levels in decibels and the operating schedules, indicating fre-

quency and operational times, as these factors significantly influence noise exposure. 

In the case of traffic noise, the sound power levels are obtained from the traffic data, specifically 

from the amount of each vehicle class (passengers, light trucks, heavy trucks and motorbikes) 

and their respective speeds, along with the characteristics of the road (type of pavement, etc). 

Receiver data is also crucial, encompassing the specific locations and heights at which noise 

impacts are assessed, such as in residential areas, schools, or hospitals. This ensures that 

evaluations are focused on areas where noise may have the most effect. Terrain and obstacle 

data are vital for modelling how sound travels through different environments. This includes 

the digital elevation model, and the buildings and barriers that may influence the sound prop-

agation path, from the source to the receptor. 

We will not store all this data in the Net4Cities Data Hub, instead, we will focus on line sources 

(traffic) and terrain data. 

Line sources: Understanding how noise disperses from line sources, such as road traffic, is 

crucial for accurate noise modeling in urban environments and the design of effective noise 

control measures. The inputs required include: 

• Coordinates of the traffic network as line paths to map the exact locations of roads, 

highways, and other transportation routes where noise generation occurs.  

• Vehicle speeds at which vehicles travel along these paths directly influence the sound 

power levels generated. 



 

 

• Traffic composition (i.e., vehicle types/categories) has distinct noise emission charac-

teristics, contributing differently to the overall noise level. 

• Traffic counts (annual average daily traffic) quantify the number of vehicles passing 

through a specific section of the traffic network. Higher traffic volumes generally lead 

to increased noise levels, making this a critical factor in noise modeling. 

• Traffic variation (weekly- and diurnal variations) can vary significantly depending on the 

time of day and day of the week. It is important to account for these variations, as noise 

levels can fluctuate based on peak and off-peak traffic periods. 

• The type of pavement can affect the noise generated by vehicles. They have varying 

levels of noise absorption and reflection capabilities, influencing the overall sound 

power levels emitted by traffic. 

Terrain Data: Terrain data is crucial for noise modeling because it significantly influences how 

sound waves travel and interact with the environment. The inputs required includes: 

• Coordinates of the grid cells defined as a square (in the data hub this will defined as 

polygons). 

• Terrain value for each grid cell. 

• Terrain type (elevation data, LULC data, surface roughness, vegetation types, etc.). 

• Obstacles (buildings and barriers/walls in the surrounding of the NMT). 

3. Quality Goals 

When creating a data hub that manages huge amounts of temporal and spatial data, it is es-

sential to establish clear quality objectives. The primary goals for ensuring quality in the 

Net4Cities Data Hub are robustness, efficiency, scalability and the ability to provide insights. 

The key quality goals for the Net4Cities Data Hub are: 

Performance and Efficiency 

• Low Latency Processing: Aim for minimum delays in processing and querying data 

even for handling extensive spatial and temporal datasets. 

• Optimized Data Storage: Utilize HBase's efficient storage mechanisms and GeoMesa's 

indexing strategies to optimize data storage, reducing storage costs and speeding up 

query responses5. 

Scalability and Flexibility 

• Horizontal Scalability: Develop a system that can scale horizontally by utilizing Apache 

Sparks’ distributed computing capabilities and Kafka’s scalable messaging system to 

manage growing data volumes and concurrent users effectively6. 

• Adaptive Data Models: Support data models accommodating various datasets with dif-

ferent spatial and temporal resolutions. 

Data Integrity and Accuracy 
 

• High Data Quality: Implement checks to ensure quality, consistent data throughout the 

hub, particularly when integrating information from multiple sources. 

• Temporal and Spatial Precision: Precision in representing spatial data should be main-

tained at a high level along with effective querying utilizing GeoMesa’s features for 

spatio-temporal indexing 5. 

 



 

 

Reliability and Availability 

• High Availability: The data hub services must ensure availability through fault tolerance 

strategies and recovery plans utilizing Kafka’s replication and Sparks’ resilient distrib-

uted datasets (RDDs)8. 

• Data Recovery: Robust backup and recovery processes should be implemented to 

safeguard against data loss and ensure business operations. 

Security and Compliance 

• Data Security: Where needed, strict data security measures must be enforced, includ-

ing encryption during transit and rest, access controls and audit logging to safeguard 

information7.  

• Regulatory Compliance: Adherence to data protection regulations and standards is cru-

cial to ensure compliance with industry requirements7. 

Usability and Accessibility 

• User-Friendly Interfaces: User-friendly interfaces should be provided for both technical 

experts and non-experts to enable querying, visualization and analysis of the data. 

• Accessibility: Sufficient documentation on the architecture, data models, APIs, and us-

age examples of the system should be offered to enhance ease of use. 

Monitoring and Maintenance 

• Monitoring: Utilize monitoring software to keep track of the well-being of the system, 

allowing for detection and fixing of problems. 

• Maintenance: Create a system that will be easy to maintain with instructions, for up-

dates, expansion and optimizing performance. 

3.1 Stakeholders 

The list identifies the main stakeholders of the Net4Cities Data Hub as follows. Clarifying these 

roles ensures that expectations around implementation, system reliability, and data accessi-

bility are clearly understood and met. This will facilitate better integration, compliance, and 

collaboration across all parties involved. 

• Stakeholders, such as development teams, project coordinators, and external re-

searchers need to understand the system architecture as they have diverse expecta-

tions and roles that significantly influence the structure and functionality of the Net4Cit-

ies Data Hub This clarity ensures all parties understand their influence on the system's 

design and functionality. 

• Individuals or entities that require assurance of the system architecture's reliability. 

• Collaborators involved in working with or deploying the system architecture. 

• Parties needing access to the system's architectural documentation for their responsi-

bilities. 

• Key decision-makers responsible for guiding system decisions and development. 

  



 

 

Table 1. Roles and responsibilities. 

Role Expectations 

NILU’s Development 

Team 

Clear and measurable implementation plan and guidelines that out-

line the structure and functionality of the Net4Cities Data Hub 

RIFS’s Development 

Team 

Clear and measurable implementation plan and guidelines that out-

line the structure and functionality of the Net4Cities Data Hub 

Development Team 

using the APIs (for in-

stance EarthSense) 

Clear onboarding process with sufficient documentation (including 

code examples) that covers all aspects of the APIs. Stability and 

reliability of the APIs, including proper versions. Support and com-

munity engagement, including a Community Forum where us-

ers/developers can ask questions. 

Project Coordinator Integrate inputs from relevant work packages and partners, con-

duct successful piloting activities, and finally deliver a high-quality 

system that supports the unique value proposition. 

External Researchers Expect the system to provide high-quality, accessible data with ad-

vanced analytical tools, ensure data accuracy and security, support 

integration with other research tools, and facilitate collaboration 

and data sharing. 

Local and national en-

vironmental agencies 

Expect the system to accurately collect and report data, ensure 

data accessibility and security, support regulatory compliance, inte-

grate with other systems, promote public transparency, and be 

user-friendly and sustainable. 

Relevant project part-

ners 

Expect the system to enable seamless collaboration, provide relia-

ble and accessible data, support integration with their existing 

tools, ensure data security, and facilitate efficient project manage-

ment and decision-making. 

The European Com-

mission 

Delivery of high-quality systems to ensure long-lasting impacts by 

providing reliable and robust performance, fostering sustainable 

practices, and supporting ongoing innovation. 

4. Architecture Constraints 

The constraints of the Net4Cities Data Hub will be reflected in the final version. This section 

shows them and if applicable, their motivation. In addition to these constraints, one must ad-

here to the Net4Cities Data Management Plan (https://syncandshare.desy.de/in-

dex.php/s/NHCMozA5zECAGjX). 

4.1 Technical Constraints 

This table outlines critical technical constraints for building, operating, and maintaining a robust 

platform for handling instruments and modelled spatial-/temporal data using Apache technol-

ogies, Scala, Java, and C#.  Each constraint is motivated by the need to ensure efficient, scal-

able, and reliable data processing and management. 

 

https://syncandshare.desy.de/index.php/s/NHCMozA5zECAGjX
https://syncandshare.desy.de/index.php/s/NHCMozA5zECAGjX


 

 

Table 2. List of Technical Constraints (TC). 

 Constraint type Constraint Description Background / motivation 

Software and programming constraints  

TC1 Language Interop-

erability 

Ensure smooth interoper-

ability between Scala, 

Java, and C# compo-

nents. 

Utilizing the strengths of each 

programming language to facili-

tate communication and integra-

tion, between components. 

TC2 Real-Time Data 

Processing 

Implement real-time data 

processing pipelines us-

ing Apache Kafka and 

Apache Spark. 

Analyzing real-time air quality 

and noise sensor data to offer 

insights and actionable steps. 

TC3 Spatial Data Han-

dling 

Efficiently manage and 

query spatial data using 

GeoMesa and Ge-

oServer. 

Specialized handling and query-

ing capabilities are crucial for 

data to support information sys-

tems (GIS) and spatial analytics. 

TC4 Data Serialization Use Apache Avro for 

data serialization to en-

sure efficient and com-

pact storage and trans-

mission of data. 

Avro presents a compact and 

swift serialization format for 

managing high-volume data and 

transmitting it over networks ef-

fectively. 

TC5 Concurrency Man-

agement 

Utilize concurrency 

frameworks and libraries 

in Scala, Java, and C# to 

handle multiple data 

streams concurrently. 

Efficiently managing data 

streams to ensure processing 

leveraging the concurrency fea-

tures unique to each program-

ming language. 

TC6 Data Ingestion Develop robust data in-

gestion pipelines using 

Apache Kafka and cus-

tom ingestion scripts in 

Scala/Java/C#. 

Ensuring reliable and scalable 

ingestion of large volumes of in-

strument and model data from 

air quality instruments and 

model inventories (emission, ter-

rain data etc.) and modelled air 

quality concentrations and noise 

decibels results.                                                 

TC7 Fault Tolerance Utilize HBase’s built-in 

support for data replica-

tion and region server 

failover to ensure contin-

uous availability. 

Ensuring the system can re-

cover from failures without data 

loss. 

TC8 Schema Evolution Manage schema 

changes over time using 

Schema Server and 

Avro’s schema evolution 

features.                         

Supporting the evolution of data 

models without causing disrup-

tions in existing applications 

while ensuring both forward and 

backward compatibility of data 

structures. 



 

 

 

TC9 API Development Develop RESTful APIs 

for data access and ma-

nipulation using frame-

works in Java and C#.                              

Offering interfaces that are user 

friendly for accessing data and 

integrating with other systems 

seamlessly.  

TC10 Data Storage Store spatial and tem-

poral data in Hbase and 

meta data in Post-

greSQL, ensuring opti-

mized storage for differ-

ent data types. 

Using appropriate storage solu-

tions for different types of data 

to ensure efficient storage, re-

trieval, and query performance 

TC11 Data Querying Implement complex que-

rying capabilities using 

Apache Phoenix and Ge-

oMesa. 

Enabling advanced querying of 

both time-series and spatial data 

to support detailed analysis and 

reporting.                                                           

TC12 Performance Opti-

mization 

Optimize performance 

through JVM tuning for 

Scala/Java applications 

and .NET optimizations 

for C# applications. 

Ensuring the applications run ef-

ficiently and handle large-scale 

data processing without perfor-

mance degradation.                                                     

TC13 Security and Ac-

cess Control 

Implement robust secu-

rity measures, including 

encryption, authentica-

tion, and authorization.                      

Protecting data from unauthor-

ized access and ensuring com-

pliance with security standards 

and regulations.                                                   

TC14 Scalability Design the system to 

scale horizontally using 

distributed processing 

frameworks like Apache 

Spark.                 

Ensuring the platform can han-

dle increasing data volumes and 

user loads by scaling out across 

multiple nodes.                                                         

TC15 Monitoring and 

Logging 

Implement comprehen-

sive monitoring and log-

ging using tools compati-

ble with Scala, Java, and 

C#.                      

Providing visibility into the sys-

tem’s operations and perfor-

mance, facilitating troubleshoot-

ing and performance tuning.                                               

Operating System Constraints 

TC16 Deployable Deployable to Linux 

server. 

The application should be de-

ployable through standard 

means on a Linux-based server. 

TC17 Patch Manage-

ment 

Regularly update the op-

erating system to apply 

security patches and up-

dates. 

Ensure the system remains se-

cure and up to date with the lat-

est protections and performance 

improvements. 



 

 

TC18 System Monitoring 

and Logging 

Use OS-specific tools for 

logging. 

Provide insights into system per-

formance and facilitate trouble-

shooting by capturing detailed 

operational data. 

Hardware constraints 

TC19 Processing Power Ensure sufficient CPU 

cores and processing 

power to handle high 

computational workloads.                           

Support intensive data pro-

cessing tasks and real-time ana-

lytics without performance deg-

radation.              

TC20 Memory Provide adequate RAM 

to handle large datasets 

and support in-memory 

processing.          

Enable efficient data processing 

and reduce the need for disk 

I/O, enhancing performance.     

TC21 Storage Capacity Ensure ample storage 

capacity with fast I/O, us-

ing SSDs for critical data 

operations.                              

Accommodate large volumes of 

instrument and model data, en-

suring quick data access and re-

trieval.                 

TC22 Network Bandwidth Ensure high network 

bandwidth and low la-

tency to support real-time 

data transmission.   

Facilitate efficient data inges-

tion, processing, and communi-

cation between distributed com-

ponents.            

 

4.2 Organizational Constraints 

Table 3. List of Organizational Constraints (OC). 

 Constraint 

type 

Constraint Description Background / motivation 

OC1 Budget Ensure the project stays 

within the allocated budget 

for development, deployment, 

and maintenance. 

Control costs and ensure the fi-

nancial feasibility and sustaina-

bility of the project.         

OC2 Staffing Ensure availability of skilled 

personnel for development, 

deployment, and support. 

Ensure the project has the nec-

essary human resources with 

appropriate skills and expertise. 

OC3 Training Provide adequate training for 

staff in modern technologies 

and processes. 

Equip team members with the 

knowledge and skills needed to 

effectively use and support the 

platform. 

OC4 Stakeholder 

Alignment 

Ensure alignment with stake-

holder expectations and re-

quirements. 

Maintain clear communication 

and agreement with stakehold-

ers to ensure project goals are 

met.                 



 

 

OC5 Change Man-

agement 

Implement robust change 

management processes to 

handle updates and new re-

quirements.                               

Ensure smooth transitions and 

minimize disruptions when 

changes are made to the system 

or processes.          

OC6 Governance Implement proper govern-

ance structures to oversee 

project progress, project risk 

and decision-making. 

Ensure accountability, transpar-

ency, and strategic alignment 

throughout the project lifecycle. 

4.3 Legal Constraints 

Table 4. List of Legal Constraints (LC). 

 Constraint 

type 

Constraint Description Background / motivation 

LC1 

 

Data Privacy 

 

Check all data processing 

steps for general data protec-

tion regulation (GDPR) com-

pliance. 

Ensure that all legitimate inter-

ests of the actors involved re-

garding data privacy and security 

are met. 

LC 2 Licenses Check all hardware and soft-

ware components involved 

about their respective license 

models. 

Ensure license-compliant opera-

tion of the entire system, consid-

ering the available budget, if 

necessary, even beyond the pro-

ject term. 

LC3 Intellectual 

Property 

Rights 

Consideration of the interests 

of project partners from the 

private sector with regard to 

non-freely available software 

components. 

Ensuring the legally secure oper-

ation of such components in the 

project context. 

 

5. System Scope and Context 

This chapter describes the environment and context of the Net4Cities Data Hub, in other 

words, who will use the system, and which other systems Net4Cities Data Hub depends on. 

5.1 Business Context 

Error! Reference source not found. illustrates the Net4Cities Data Hub in a business context.  

The Net4Cities Data Hub aims to combine data sources and analytical models to offer insight 

into urban environmental conditions. This integration supports decision-making and boosts 

public awareness by providing targeted insights, for researchers, policymakers and the public. 



 

 

 

 

 

Figure 3. Net4Cities Data Hub in a business context. 

Key Components: 

1. Data Sources: 

• MappAir® is Earth Sense's proprietary modeling engine designed to create air pollutant 

dispersion models and maps for key pollutants. It can process diverse pollution sources 

and track the dispersion and evolution of emissions. MappAir® handles various spatial 

scales and temporal resolutions, offering real-time (hourly) source apportionment of 

PM2.5 and NOx at a spatial resolution of up to 10 meters.  

• ATMO-Street - Urban Air Quality Model: Focuses on city air quality data providing in-

depth insights into conditions at a local level. 

• Noise Model System: Provides information on noise pollution levels for assessing sus-

tainability and health impacts. 

• Traffic data: Generates emissions and noise data from vehicle sources serving as in-

put, for air quality and noise models. 

• Air Quality Monitoring Stations: Provide real-time air quality data to ensure the system 

stays updated with the most recent environmental conditions. 

 
 

 



 

 

2. Net4Cities Studio: 

• Researcher User: This platform offers advanced analytical tools and detailed data dis-

plays to assist in-depth environmental research. 

• General Public: This interface is designed inform citizens about their local environmen-

tal conditions by providing information and data visualizations, thereby promoting public 

awareness. 

• Policy Makers: This platform provides insights and visualizations to aid evidence-based 

decision making to support the design of environmental policies. 

By integrating these components, the Net4Cities system, which includes the Net4Cities data 

hub and Net4Cities Studio aims to create a platform that enhances understanding of urban 

environmental conditions and provides valuable insights for various stakeholders, thereby con-

tributing to the development of smarter and more sustainable cities. 

6. Technical Context 

 

Figure 4. Net4Cities Data Hub in a technical context. 

The diagram above illustrates the Net4Cities Data Hub in a setting presented as a layered 

structure that outlines components and their interactions across four key layers: Data Inges-

tion, Data Storage, Data Processing and Querying, and Data Serving and Visualization. Here 

is an overview of the interfaces and how specific domain inputs/outputs are linked to these 

channels. 

6.1. Data Ingestion Layer 

This layer is responsible for gathering and importing data from sources into the system. 

• Instrument REST API: This API interface manages data ingestion from instruments, 

including devices, environmental instruments and other hardware that collects real-time 

data. 

• Model REST API: This API interface focuses on importing data related to models. It 

can include inputs, outputs, parameters and metadata of machine learning models. 

• Avro8 is a data serialization system utilizing JSON to define data schemas. It facilitates 

data exchange by allowing serialization/deserialization while ensuring schema compat-

ibility over time. This feature proves beneficial in maintaining compatibility across ver-

sions of data. 

• The Schema Server is responsible for managing data format schemas to maintain data 

structures ensuring data integrity and compatibility across different systems. 



 

 

• Apache Kafka plays a role as a distributed streaming platform for real-time data inges-

tion supporting throughput and low latency data streaming. It facilitates the collection 

and transfer of volumes of data across system components. 

• Apache Spark serves as an engine for data ingestion, capable of handling both real-

time and batch-processing tasks making it suitable for managing large scale datasets. 

• GeoMesa is a spatial data management system that works in conjunction with Apache 

Kafka to ingest information. It excels in executing queries that involve temporal dimen-

sions. 

Input/Output Mapping: 

• Model data flows through the Model REST API before being serialized using Avro to 

optimize storage efficiency and processing speed.  

• Data, from instruments is received via the Instrument REST API, managed by the 

Schema Server and then sent through Apache Kafka for processing. 

• Spatial and temporal data is brought in through GeoMesa, which might also utilize 

Apache Kafka for real-time geospatial data streaming. 

6.2. Data Storage Layer 

This layer holds the received data, for processing and retrieval. 

• PostgreSQL (Inventory System): A database used to store structured inventory 

data. It ensures data reliability through ACID properties (Atomicity, Consistency, Iso-

lation, Durability). 

• HBase: A non-relational distributed database built to manage large scale datasets. 

It's well suited for storing time series data and other large datasets requiring 

read/write operations.  

• File-based storage: This method is employed to store file types that do not align with 

database structures like large binary files, images, logs and raw data files. 

Input/Output Mapping: 

• Inventory data from PostgreSQL. 

• Large-scale time series and vector data stored in HBase. 

• Raster data types stored in a file-based system. 

6.3. Data Processing and Querying Layer 

This layer is responsible for handling the stored data and supporting querying processes. It 

utilizes the following tools for data processing:  

• Apache Spark: A framework designed for quick processing of large datasets and dis-

tributing tasks across multiple computers. 

• Apache Phoenix: Acts as a SQL layer on top of HBase enabling SQL based querying 

since HBase lacks SQL support. Phoenix translates HBase scan operations into SQL 

commands. 

• GeoMesa: Enhances the system by providing spatial query capabilities allowing que-

rying and processing of large geospatial datasets by integrating with Apache Spark and 

Kafka for real-time analytics. 

Input/Output Mapping: 

• Data from HBase is queried using Apache Phoenix. 

• Large datasets processed with Apache Spark. 



 

 

• Spatio-temporal data queried and processed with GeoMesa, facilitating complex geo-

spatial analyses. 

6.4. Data Serving and Visualization Layer 

This layer provides interfaces for accessing processed data and tools for visualizing it. 

• GeoServer: Serves geospatial data via standard web services (e.g., WMS, WFS). It 

allows for sharing and visualizing geospatial data over the web, supporting a wide 

range of geospatial data formats.  

• Instrument Data REST-API: This API allows access to both processed and raw instru-

ment data. It provides endpoints for querying instrument data based on various param-

eters. 

• Model Data REST-API: Like the Instrument Data API, this interface allows access to 

model-related data, providing endpoints for querying processed and raw model data. 

• Zeppelin Notebook and Jupyter Notebook: These interactive web-based notebooks 

are used for data exploration and visualization15. They allow data scientists and ana-

lysts to write and execute code in real-time, visualize data, and share insights. 

Input/Output Mapping: 

• GeoServer serves processed geospatial data. 

• Instrument and model data can be accessed via respective REST-APIs. 

• Data scientists and analysts can use Zeppelin and/or Jupyter Notebooks for interactive 

data analysis and visualization. 

The system will efficiently process big amounts of diverse data types through well-designed 

pipelines. Each layer utilizes tools and frameworks to maintain data integrity, scalability and 

accessibility. This enables querying real-time processing, as well as interactive data analysis. 

 

7. Solution Strategy 

The design of the system is influenced by strategic tech choices a step-by-step breakdown 

strategy and a focus on achieving scalability, performance, adaptability and dependability us-

ing open-source technology widely supported and utilized by organizations within the commu-

nity. Organizational choices like embracing methodologies and fostering skills will play a vital 

role in effectively developing and maintaining the system. This methodical approach will ensure 

an adaptable and scalable data processing system of managing various data formats and 

providing valuable insights through advanced processing and visualization tools. 

 

  



 

 

Table 5. The requirements, architectural approaches, and description. 

Goal/Requirement Architectural Approach Details 

Scalability 
Use of distributed sys-
tems 

Apache Kafka for scalable 
data ingestion, HBase for 
scalable data storage, 
Apache Spark for distributed 
data processing. 

Performance 
Efficient processing and 
querying 

Real-time data streaming with 
Apache Kafka, batch and 
stream processing with 
Apache Spark, fast SQL-
based querying with Apache 
Phoenix. 

Flexibility 

Diverse storage and ac-
cess methods, and sup-
port different program-
ming frameworks 

File-based storage for flexible 
data types, NoSQL (HBase) 
for large volumes of unstruc-
tured data, REST APIs for 
standardized data access. 
Support Scala, Java, Python, 
R and C#. 

Consistency and Reli-
ability 

Data serialization and 
schema management 

Avro for data serialization, 
Schema Server for consistent 
schema management, 
Apache Kafka for reliable 
data streaming. 

Interactive Data Anal-
ysis 

Use of collaborative tools 
Zeppelin and Jupyter Note-
books for interactive data ex-
ploration and visualization. 

Handling Spatio-Tem-
poral Data 

Specialized tools 
GeoMesa for spatio-temporal 
data management and query-
ing. 

Structured Data Stor-
age of inven-
tory/metadata 

Relational database 
PostgreSQL for robust and 
complex query support. 

Development Process Agile methodologies 
Iterative development, contin-
uous improvement, and use 
of collaborative tools. 

Data Privacy 
State-of-the-art data se-
curity and access control 

SSL-encrypted traffic, token-
and/or password-based ac-
cess to REST-API. 



 

 

8. Building Block View 

The perspective of building blocks presents a breakdown of the system into components, like 

modules, components, subsystems, interfaces, packages, libraries, frameworks, layers, parti-

tions, levels, functions, macros, operations and data structures. It also includes their depend-

encies such as relationships and connections. This view is crucial for documenting the archi-

tecture as it offers a depiction of the system’s structure and how its different parts interact. 

• Modules and Components: These are self-contained units within the system that 

handle functions. For example, in the data ingestion layer, there are components like 

Model REST API, Instrument REST API, Avro, Schema Server, Apache Kafka, 

Apache Spark Ingestion and GeoMesa. 

• Subsystems: These are sections of the system that are built up of components that 

work together. An example is the Data Storage Layer which comprises PostgreSQL, 

HBase, and file-based storage systems. 

• Interfaces: They specify the functionality of components and how they interact with 

each other. For instance, the interfaces provided by REST API in the data provisioning 

and visualization layers. 

• Packages and Libraries: Sets of classes and interfaces bundled together for reuse 

such as the libraries utilized by Apache Spark for handling data.  

• Frameworks: Serve as platforms that support the structure of a system like how 

Apache Kafka is used for stream processing and Apache Phoenix is employed for que-

rying HBase. 

• Layers and Tiers: Represent varying levels of abstraction and separation of responsi-

bilities within a system, including stages like data ingestion, storage, processing, que-

rying and serving/visualization. 

The building block perspective presents an arrangement of entities (black boxes) and detailed 

entities (white boxes) along with their explanations. This form of abstraction facilitates commu-

nication with stakeholders at a level without delving into technical specifics. Visualizing the 

architecture in this manner aids in managing, expanding and upkeeping the system efficiently. 

The term "Black Box" refers to a higher-level component or subsystem that keeps the "under 

the hood" mechanism hidden like the data ingestion layer. 

On the other hand, a "White Box" provides a view of the internal structure of the black box 

illustrating how specific components and modules interact and function within it. For instance, 

Apache Kafka, Schema Server and REST APIs collaborate within the data ingestion layer. 

This hierarchical organization helps break down the system into parts. It ensures that each 

layer and component is understandable both on its own and in relation to the overall architec-

ture. This document discusses details about the context, Level 1 and Level 2 diagrams. 

The context diagram (shown in Figure 5) plays a role in system architecture by offering an 

overview of how a system engages with its external surroundings. It aids in defining boundaries 

and scope while fostering understanding among stakeholders regarding the system’s opera-

tional environment and external dependencies. This clarity facilitates informed decision-mak-

ing and effective communication, at every stage of system development and integration. 

 

 



 

 

 

Figure 5. The context diagram. 

Level 1 is a white-box description of the entire system and a black-box description of all con-

tained building blocks, as shown in Figure 6. It serves as a central tool in system architecture 

by breaking down the system into its most important subsystems or components. It effectively 

highlights the important data flows and interactions between these components and illustrates 

how the major building blocks (black boxes) relate to each other. This mid-level view bridges 

the gap between the high-level context provided by the context diagram and the detailed de-

sign captured in the Level 2 diagram (Figure 7).  

Level 2 zooms in on some of the Level 1 building blocks, as shown in Figure 7. Therefore, it 

contains white-box descriptions of selected Level 1 building blocks and black-box descriptions 

of the building blocks inside them. It becomes an important tool in system architecture by 

providing a detailed view of individual subsystems or components. It describes the internal 

structure, data flows, and complex interactions within each component.  

The system is divided into layers. Building blocks to ensure it can scale be maintained effi-

ciently and process data effectively. Each layer and its components serve purposes allowing 

the system to manage types of data in large quantities while maintaining performance and data 

integrity. This structured method supports development simplifies issue resolution and permits 

the adjustment of individual components as required. 

 



 

 

 

Figure 6. The Level 1 diagram. 

 

Figure 7. The Level 2 diagram. 



 

 

8.1 Black Box Descriptions 

The Model REST API handles fetching data related to models, into the system by accepting 

HTTP POST requests with JSON data and providing HTTP status codes and messages in 

response. While there may be concerns about scalability as data volume grows, the API prior-

itizes ensuring availability and minimal latency. 

The Instrument REST API retrieves data from instruments into the system through HTTP 

POST requests containing instrument data in JSON format responding with HTTP status codes 

and messages. It focuses on real-time data processing. Fault tolerance acknowledges the 

challenge of managing instrument types. 

Avro plays a role in serializing and deserializing data working with JSON-based data schemas 

to generate serialized binary information. It facilitates schema development and compact rep-

resentation of data though managing schemas remains a concern. The schema server is re-

sponsible for storing and managing data schemas handling registration requests and retrieval 

responses to ensure consistency and speedy access to schemas while addressing conflicts in 

schema versions. 

Apache Kafka drives real-time streaming and data ingestion processes by enabling producers 

to publish messages and consumers to subscribe to topics, for communication. The system 

offers data processing and minimal delays. However, it encounters difficulties in managing 

data streams and maintaining message sequences.  

Apache Spark Ingestion deals with processing volumes of data in time and batch modes taking 

in data from diverse origins and generating refined data to a storage layer. It can scale up but 

handling resources efficiently and optimizing them might present challenges. 

GeoMesa handles retrieval of spatial data and overseeing data streams and establishing in-

dexed. It supports complex spatial queries despite the complexities involved in dealing with 

large scale geospatial data. 

8.2 White Box Descriptions 

Apache Spark executes data transformations, facilitates machine learning and graph pro-

cessing and interfaces with data sources. Leveraging in-memory processing for computations 

Apache Spark offers APIs in Java, Scala, Python and R for data operations. Its fault tolerance 

features ensure scalability making it well suited for managing data processing tasks. 

Structured components of Apache Spark Ingestion encompass elements such as Spark 

Streaming, Datasets and Data Frames. Spark Streaming handles the processing of data in 

time while Datasets and Data Frames are in charge of managing data. Spark SQL allows for 

running SQL queries on the data that is being ingested. These components work together with 

Kafka for real-time data processing, HBase for storage and Schema Server for validating sche-

mas. Within Spark Streaming’s structure there is a batch processing engine that ensures fault 

tolerance and seamless integration with Spark components. The micro batch engine pro-

cesses data in batches fault tolerance is maintained through checkpoints to guarantee data 

reliability. It seamlessly integrates with datasets, data frames and external sources of data. 

The internal architecture of GeoMesa includes features like indexes, integration with Kafka and 

powerful query engines. The spatial index efficiently manages geospatial data indexes to fa-

cilitate querying, while the Kafka integration allows for real-time ingestion of information while 

the query engine handles spatiotemporal queries. GeoMesa collaborates with HBase for stor-

ing data Apache Spark for processing tasks and GeoServer for serving up the processed in-

formation. The internal structure concerning indexes, within GeoMesa details how these in-

dexes are created, managed effectively, and utilized. Index creation involves the development 



 

 

of indexes, while index management includes tools for maintaining and updating these in-

dexes. Using queries involves applying techniques to exploit indexes in query executions.  

HBase is a distributed database tailored for handling datasets without relational structures. It 

stores data in columns and offers real-time read/write access across a distributed system like 

HDFS. HBase is built to expand horizontally by incorporating nodes to manage data volumes 

and workloads ensuring resilience and high availability. The database supports sharding and 

load balancing allowing execution of large-scale data operations. It is commonly used for stor-

ing time series data, instrument information and other substantial datasets that necessitate 

access and storage capabilities. 

Apache Phoenix introduces an SQL interface on top of HBase that translates SQL queries into 

operations, on HBase providing SQL query functionalities. It facilitates joins and aggregations 

enabling users to conduct queries on HBase data. Phoenix enhances query efficiency using 

indexes facilitating retrieval and manipulation of data. It seamlessly integrates with existing 

HBase setups offering users a SQL interface to interact with the underlying HBase information. 

PostgreSQL, a database system, is in charge of storing organized inventory information. It 

upholds data integrity by following ACID standards and facilitates queries and transactions. 

This system utilizes SQL for managing and retrieving data offering support for maintaining data 

integrity, indexing and handling transactions. With its availability and durability features, Post-

greSQL is well suited for applications that demand uniform data storage. 

File-based storage serves as a repository for various file formats providing flexibility in storing 

unstructured data. It accommodates file storage needs, offers accessibility, and management 

options making it ideal for housing unstructured data like documents, images and videos. File-

based storage systems commonly integrate distributed file systems (such as HDFS) ensuring 

redundancy and fault tolerance. This element guarantees that data remains easily accessible, 

secure and well managed while supporting high throughput operations with integration across 

data processing systems. In terms of Data Observation/Visualization capabilities, GeoServer 

delivers information via web services using protocols like WMS and WFS. It empowers users 

to visualize and interact with data effectively while serving as a platform for managing and 

disseminating geospatial information. GeoServer offers support for data formats and seam-

lessly integrates with GeoMesa for advanced spatiotemporal queries.  

The Instrument Data REST API serves as a user interface for accessing both processed and 

raw instrument data allowing flexible access to instrument information with a range of query 

options. It ensures the availability of data and enables real-time interaction. Similarly, the Model 

Data REST API provides endpoints to retrieve model inputs, outputs and metadata making it 

simple to access model data while facilitating integration with systems. Both APIs prioritize 

reliable data accessibility while ensuring availability and scalability. 

Zeppelin Notebook and Jupyter Notebook are both web-based platforms designed for explor-

ing and visualizing data. Users can write code, execute it, visualize the results, and share 

findings in a space that complies with data protection regulations. These notebooks support 

different programming languages and offer extensive visualization libraries to promote collab-

oration among data scientists and analysts. They are compatible with data sources and pro-

cessing frameworks and can be used for conducting comprehensive data analysis and visual-

ization tasks. 

9. Runtime View 

The system’s real-time perspective offers a view that focuses on how different parts interact 

and communicate while tasks are being carried out. During operations, the system goes 



 

 

through stages such as data input, storage, processing, querying and delivery with multiple 

components collaborating to handle and respond to the data. 

9.1 Data Ingestion Phase 

In the data input phase, various sources feed information into the system. For instance, the 

model data and the input data for the model are sourced to be sent to the model REST API. It 

is serialized using Avro for data formatting and schema compatibility. Instrument data is re-

ceived through the instrument REST API with schema management handled by the schema 

server to maintain data structures. Apache Kafka serves as a core component for real-time 

data streaming facilitating the transfer of instrument and model information across the system. 

GeoMesa manages data input and leverages Kafka for geospatial streaming. This phase en-

sures that all incoming data is correctly formatted, serialized and prepared for processing. 

9.2 Data Storage Phase 

Following ingestion, the processed information is directed to a storage solution. Structured 

inventory details (metadata) are stored in PostgreSQL—a database known for ensuring data 

integrity and supporting queries. Large amounts of time series and vector data are saved in 

HBase, a distributed database designed for handling datasets without relationships. Raster 

data and various file formats are stored in a file-based storage system indexed using PostGIS. 

This step ensures that all data is securely stored and can be easily processed and queried. 

9.3 Data Processing and Querying Phase 

In the phase of processing data, Apache Spark acts as an engine for managing extensive data 

processing tasks. Spark handles both batch and real-time data carrying out transformations 

and aggregations. For queries, Apache Phoenix adds a SQL layer on top of HBase to convert 

SQL queries into HBase operations enabling retrieval of data using SQL syntax. GeoMesa 

further enriches query capabilities by providing query functions for datasets. This phase guar-

antees processing of data for gaining insights through interrogation. 

9.4 Data Serving and Visualization Phase 

Data can be accessed and visualized via different interfaces and tools. GeoServer serves in-

formation through web services allowing users to visualize and interact with maps and spatial 

information. The Instrument Data REST API and Model Data REST API offer endpoints to 

access processed instrument and model data respectively. Interactive notebooks, like Zeppelin 

and Jupyter allow data scientists to analyze, visualize, write and run code in real-time. This 

phase ensures that end users can efficiently access, analyze and visualize data. 

9.5 Sequence of Processes 

In this system, several key scenarios can be visualized through sequence diagrams. Sequence 

diagrams illustrate the interactions between objects or components in a sequential manner and 

show the flow of messages and data over time (Figure 8).  

9.5.1 Ingesting Instrument Data 

In this scenario (refer to Figure 8), the instrument is the data source and is transmitting data to 

the system. The process commences when the instrument device sends an HTTP request to 

the instrument REST API with both the instrument data and its schema. Upon receiving this 

data, the instrument REST API promptly validates it against the schema provided by the 

schema server. If the instrument data does not adhere to the data schema, the schema server 

rejects it ensuring that only valid data is processed. 



 

 

Following validation, the data undergoes serialization using Avro. An Avro dataset comprises 

instrument data and its schema creating a concise and efficient transmission format. This se-

rialized information is then sent to an Apache Kafka topic for real-time streaming processing. 

Apache Kafka plays a role in this setup by streaming verified and serialized instrument data to 

consumers for further processing and analysis. This mechanism guarantees a dependable 

transfer of instrument data from producers to processing components within the system. 

 

Figure 8. The sequence diagram for the Kafka producer for instrument data. 

9.5.2 Ingesting Inventory Data and Storing 

In this scenario (refer to Figure 9) the process of saving inventory information starts when the 

data is transmitted to the model REST API through an HTTP request. The model REST API 

verifies the inventory data to make sure it follows a format. Once confirmed, the data is trans-

formed into Avro, which compacts both the data and its structure into a compressed form, for 

storage and transfer. The compacted inventory information is then saved in PostgreSQL. Post-

greSQL organizes this information for retrieval and ensures its integrity. This series of steps 

guarantees that the inventory details are accurately captured, validated and stored in a manner 

that facilitates access and analysis. 



 

 

 

Figure 9. The sequence diagram for the Kafka producer for inventory data and persistence. 

9.5.3 Persistence of Spatio-temporal Data and Quality Control 

In this scenario illustrated in Figure 10 and Figure 11 Apache Kafka plays a role, within the 

system by transmitting validated and serialized instrument observation data to recipients for 

further analysis. This facilitates a dependable flow of instrument data from producers to pro-

cessing components in the system. GeoMesa collaborates with Apache Kafka to intake data 

into Spark for processing. In this configuration the initial Spark Submit application functions as 

both a Kafka consumer and producer. It retrieves data from Kafka at intervals of 10 seconds, 

processes it, and stores the details in HBase. Instrument information requiring quality assur-

ance is returned to Kafka for consumption by the Spark application, establishing a pipeline for 

processing. The second Spark Submit application operates as a Kafka consumer for quality 

control (QC). It also retrieves data periodically from Kafka every 10 seconds. Executes QC 

tasks such as applying QC flags on the data. Following processing, it updates the modified QC 

flags into HBase. This methodical approach ensures that data is not just captured and stored 

but is also meticulously reviewed and tagged with quality indicators thus upholding data integ-

rity throughout the system. 

 



 

 

 

Figure 10. The sequence diagram for data pipeline #1 for incoming data storage. 

 

Figure 11. The sequence diagram for data pipeline #2 for quality control. 

9.5.4 Persistence of RASTER Spatio-temporal RASTER Data and Quality Control 

The results of the air quality and noise models are provided as GeoTiff files according to the 

OCG GeoTIFF standard (https://www.ogc.org/standard/geotiff/). Net4Cities Data Hub provides 

a storage and access solution based on PostGIS and GeoServer using the ImageMosaic 

plugin. In this context, a mosaic is a collection of raster images combined into a single dataset. 

This is useful for managing and visualizing large datasets covering wide geographic areas or 

multi-dimensional tiles.  

The following sequence diagram (Figure 12) shows how the main process of saving a raster 

file to the Net4Cities datacenter works. Although authentication and authorization are not in-

cluded in the diagram, they are part of the implemented system (token-based). In addition to 

load balancing, the interaction takes place between three components: the REST API, PostGIS 

(a plugin in PostgreSQL for working with spatial data), and the GeoServers REST API. The 



 

 

modeling system sends its GeoTIFF files to the REST API, which PostGIS uses as a DBMS 

to index the ImageMosaic. In addition, a ZIP file containing the GeoTIFF files and datastore 

properties is sent to the GeoServer via the REST API so that the new image layer is available. 

For styling purposes (e.g., colors, labels), the system assigns an SLD and an XML-based style 

layer descriptor to the image layer, making it ready for visualization. 

 

Figure 12. The sequence diagram for the data for incoming raster data storage. 

In all these situations the system leverages technologies and frameworks to ensure perfor-

mance, scalability and data integrity. Avros efficient serialization and schema development 

features play a role, in maintaining data compatibility. The distributed streaming platform of-

fered by Apache Kafka delivers real-time data processing capabilities while guaranteeing la-

tency and high throughput. Apache Sparks robust processing engine facilitates large-scale 

data transformations and analyses. GeoMesa seamlessly integrates functionalities with these 

components enhancing the system’s capability to process and query geospatial datasets. 

PostgreSQL and HBase serve as scalable storage solutions each tailored for data types and 

access patterns. Lastly, GeoServer, along with platforms like Zeppelin and Jupyter, provides 

user interfaces for accessing, visualizing data and supporting a wide array of analytical tasks. 

10. Deployment 

Software systems rely on underlying hardware infrastructure to run effectively. Understanding 

this infrastructure is critical because it directly affects system performance and scalability. The 

deployed infrastructure supports: 

• Source code repository and CI/CD pipelines will be done using GitLab. The deployment 

will be into multiple environments: development, testing, staging, and production. 

• Utilization of Proxmox cluster for VM deployment, facilitating flexible resource alloca-

tion. 

• Use of GlusterFS for storage in select environments, enhancing data reliability and ac-

cess speed. 

• VLAN-based network architecture ensuring direct communication between compo-

nents. 

• Planned scalability through additional Proxmox hosts, supporting both vertical and hor-

izontal scaling strategies. 



 

 

10.1 Identify Infrastructure Elements 

Geographical Locations: All components are centralized at NILU’s local data center in 

Kjeller, Norway. 

Environments: 

• Technical test: for testing Ansible scripts, etc. 

• Dev: for testing newer versions of components and code. 

• Stage: for testing what was in dev, but with the same dataset as for prod. 

• Prod: for running the solution with the production dataset. 

Computers/VMs/Containers: 

• All components (such as HADOOP/YARN, HBASE, Confluent) will run in VMs on our 

Proxmox cluster. 

• ZooKeeper also runs on servers with HADOOP/YARN. 

Network Topologies: Components are on a single VLAN, communicating directly. 

Other Infrastructure Elements: 

• For some environments (tt, dev), storage on separate GlusterFS instance (SSD). 

• Stage may also use GlusterFS (SSD). 

• Production uses SSDs directly attached to Proxmox hosts, with VMs having dedicated 

storage on specific hosts. 

10.2 Identify Software Elements 

Identify Software Components: 

• GlusterFS, HADOOP/YARN, HBASE, Confluent (Schema Registry, Kafka, Kafka 

REST). 

• Front-end components like APIs managed by NILU DIGITAL. 

Specify Deployment Units: Most components are downloaded as tar.gz files for Linux and 

run directly from extracted folders. 

Deployment Environment Mapping: Components are deployed across all environments. 

Deployment Configuration: Configuration details are handled by NILU DIGITAL. 

10.3 Document the Mapping 

Deployment Scripts and Automation: 

• Ansible used to deploy HADOOP/YARN, HBASE, Confluent components. 

• Ansible Semaphore manages Ansible scripts. 

Consider Non-Functional Requirements: 

• Performance: Testing is required once the environment is operational with production 

data. 

• Scalability: Vertical scaling possible; horizontal scaling limited due to shared Proxmox 

cluster, though more hosts are being added. 

• Security: Components communicate with SSL; Kerberos used for internal component 

communication (e.g., HADOOP/YARN). 

• Maintainability: Updates challenging due to version compatibility; monitoring by Ic-

inga/Zabbix combination. 



 

 

11. Cross-cutting Concepts 

This section outlines the principles, rules and potential solutions that are relevant to various 

aspects of the system. These overarching concepts help maintain consistency, uniformity and 

alignment with the vision for the system. They ensure that the system is developed and exe-

cuted in a cohesive manner. Adhering to these guiding principles results in a level of unity 

within the system enhancing its reliability, ease of maintenance and expandability.  

In the described data system architecture, several overarching concepts are discussed that 

are crucial across levels enhancing capabilities and ensuring smooth data operation and man-

agement. These key concepts include (illustrated in Figure 13): 

• Data Serialization and Schema Management 

• Real-Time Data Processing and Streaming 

• Distributed Computing and Scalability 

• Geospatial and Temporal Data Management 

• Interactive Data Exploration and Visualization 

 

 

 

Figure 13. The crosscutting concepts. 

11.1 Data Serialization and Schema Management 

Using Avro for data serialization and managing schemas through a schema server are archi-

tectural concepts. Avro helps optimize data exchange by converting data into a form, which 

enhances storage and transmission efficiency while ensuring compatibility with evolving sche-

mas. This is crucial in scenarios where data structures may change over time without disrupt-

ing existing data pipelines. The schema server plays a role in maintaining consistency by han-

dling and versioning schemas for various data formats thereby enhancing data integrity and 

interoperability across different sources and storage systems. 



 

 

11.2 Real-Time Data Processing and Streaming 

In the realm of real-time data processing and streaming, Apache Kafka acts as the foundation 

for ingesting and streaming data within the architecture. It facilitates throughput low latency 

data transfer among distributed systems. It enables continuous flow of information from diverse 

sources to the processing layer. This setup ensures that the system can effectively handle 

streaming data, offer time capabilities and make timely decisions based on up-to-date infor-

mation. Integrating Kafka with tools, like Apache Spark and GeoMesa enhances the architec-

ture’s capacity to process and analyze data streams efficiently while adapting to changing vol-

umes and speeds of information. 

11.3 Distributed Computing and Scalability 

When it comes to distributed computing and scalability Apache Spark serves as a core element 

that exemplifies these concepts effectively. 

Spark has the capability to efficiently manage datasets and handle computations by distributing 

tasks across multiple nodes. Its versatility in working with both batch and real-time processing 

modes offers flexibility for handling data types and workloads. This approach boosts perfor-

mance. It also enables scalability by expanding horizontally as data volume increases. When 

coupled with storage solutions like HBase and PostgreSQL, Spark streamlines data retrieval 

and processing, ensuring a framework for the entire system. 

11.4 Geospatial and Temporal Data Management 

In managing temporal data, GeoMesa provides features tailored for spatial-temporal data man-

agement, which is particularly crucial in applications necessitating geospatial analysis and vis-

ualization. By integrating with Apache Kafka and other data processing frameworks, GeoMesa 

facilitates the storage, retrieval and querying of geospatial datasets. This functionality caters 

to applications such as monitoring, logistics and urban planning that rely on understanding 

spatial relationships and temporal patterns. With its indexing capabilities and query optimiza-

tion features, GeoMesa strengthens the system’s capacity to handle intricate geospatial que-

ries while enabling profound data-driven insights for decision-making support. 

11.5 Interactive Data Exploration and Visualization 

For exploration of data visualization tools like Zeppelin Notebook and Jupyter Notebook add a 

layer of interactivity to the system by enabling analysis of datasets. These online notebooks 

create a space for data scientists and analysts to investigate data, execute algorithms and 

visualize outcomes in real-time. This idea promotes a process of data exploration and hypoth-

esis testing, resulting in understanding and better communication of findings within the organ-

ization. By integrating GeoServer and REST API, these notebooks enable users to interact 

directly with processed data supporting agile decision-making processes that are well-in-

formed. 

These overarching concepts form the foundation of the system architecture being discussed, 

enhancing its abilities and ensuring its efficiency in handling types of data. They facilitate real-

time processing, geospatial analysis, interactive data exploration and visualization in a web-

based solution. By leveraging these concepts organizations can construct data infrastructures 

that not only handle data effectively but also uncover actionable insights. This drives innovation 

and strategic decision-making across domains. 



 

 

12. Quality Requirements 

Quality requirements define the non-functional characteristics that a system must have to meet 

user expectations and operational requirements. In the described data system architecture, 

several important quality requirements ensure its effectiveness, reliability, performance, and 

maintainability. 

12.1 Quality Tree 

A quality tree represents the hierarchy of functional requirements or quality attributes in a sys-

tem outlining how these attributes are organized and prioritized to achieve overall system ob-

jectives. 

12.1.1 Performance 

The system needs to handle data volumes with minimal latency for real-time data streams. It 

should be capable of scaling to support increasing data loads and user needs without sacrific-

ing performance. Moreover, interactive elements like REST APIs and data visualization tools 

should deliver responses promptly to ensure user satisfaction. 

12.1.2 Reliability 

Components such as Apache Kafka, HBase and PostgreSQL must exhibit resilience to guar-

antee data availability and consistency. Avro’s serialization and schema management are es-

sential for maintaining data coherence and ensuring compatibility across system components 

and versions. 

12.1.3 Security 

Ensuring the transmission and storage of information is crucial for compliance with regulations 

like GDPR. Implementing role-based access control for data APIs and interactive notebooks 

is necessary to prevent access and safeguard data confidentiality. 

12.1.4 Maintainability 

The architecture should be modularly designed with documentation for maintenance, updates 

and expansions. Keeping track of the performance of system components, like Kafka and 

Spark, through logging and monitoring is crucial for monitoring performance metrics identifying 

irregularities and aiding in problem solving. 

12.1.5 Usability 

When it comes to usability, having user-friendly interfaces such as Zeppelin and Jupyter note-

books is key for data exploration and visualization. Providing documentation and tutorials to 

both users and administrators is essential for system integration and operation. 

12.2 Quality Scenarios 

12.2.1 Scenario 1: High Throughput Data Ingestion 

The system needs to handle 10,000 data points per second from instrument APIs with mini-

mum latency (less than 100 milliseconds) when ingesting data into Kafka. Monitoring the av-

erage time taken to ingest and process instrument data will ensure it meets the latency stand-

ards. Load testing tools will be used to simulate peak data loads to test if Kafka and Spark can 

maintain the throughput without performance issues. 



 

 

12.2.2 Scenario 2: Real-Time Query Response 

Real-time query responses for GeoMesa spatial data queries should deliver results within one 

second for queries. Performance testing, under load conditions, will be conducted to validate 

if GeoMesa queries meet the latency requirements. Monitoring tools integrated with GeoMesa 

will be used to verify response times during testing. 

12.2.3 Scenario 3: Scalability 

The system needs to be able to grow to handle a 50% increase in data volume within six 

months without needing changes in its design. We will check this by monitoring how the system 

uses its resources (like CPU, memory, disk I/O) during times and predicting how well it can 

grow based on trends. To confirm this, we will do stress tests to see if tools like Kafka, Spark 

and storage systems can handle data without losing performance. 

12.2.4 Scenario 4: System Monitoring and Maintenance 

Centralized logging and monitoring must be implemented for Kafka, Spark, and database sys-

tems to proactively detect and respond to system failures. This requirement will be measured 

by setting up monitoring dashboards to track system performance metrics such as throughput, 

latency, and error rates in real-time. Verification will involve conducting incident response drills 

to test the effectiveness of monitoring alerts and procedures for handling system failures and 

performance bottlenecks. 

13. Risks and Technical Debts 

Every intricate data system structure comes with risks that could affect its operation, efficiency 

and overall dependability. By pinpointing these, risks strategies can be put in place to lessen 

disruptions. 

In the distributed computing environment, utilizing tools such as Apache Kafka and HBase 

introduces significant challenges related to data consistency and integrity. Due to the dis-

tributed nature of such systems, there is an enhanced risk of encountering issues with data 

consistency, particularly when managing large volumes of data or during system failures. In-

accurate data can impact negatively on business functions and diminish user confidence in the 

system. To address such risks effectively, it is crucial to establish robust data validation mech-

anisms between Kafka producers and consumers, utilize error-handling capabilities strategi-

cally, and routinely verify data integrity through automated checks alongside manual validation 

procedures. 

Considering the scalability and performance, tools, such as Apache Spark and Kafka are 

inherently designed to handle scalability efficiently. However, sudden increase in data volumes 

or unforeseen spikes in user activity can still strain system resources. This can lead to a decline 

in performance, resulting in longer processing times for data, slower responses to queries, and 

potential system failures during peak usage periods. To mitigate these risks effectively, it is 

essential to conduct thorough load testing to simulate various scalability scenarios, optimize 

cluster configurations for resource efficiency, and implement auto-scaling features to dynami-

cally adjust resources based on real-time workload demands.  

Another major concern is security vulnerabilities due to the system’s data inputs and outputs. 

These aspects expose the system to security risks such as access, data breaches and denial 

of service attacks. Breaches could lead to data leaks, loss of information, noncompliance with 

regulations and damage to reputation. Strategies for mitigating these risks involve implement-

ing authentication and authorization mechanisms for API endpoints and data storage systems, 



 

 

regularly updating software components, conducting security audits and penetration tests as 

well as ensuring encryption for data in transit and at rest. 

13.1 Technical Debts in the System Description 

The section on Technical Debts in the System Description discusses how technical debt accu-

mulates from incomplete design choices made during the development and implementation 

phases. These decisions can result in lower system performance, maintenance challenges 

and delays in feature enhancements. 

Architectural complexity serves as a type of debt that emerges from integrating various tech-

nologies, like Apache Kafka, Spark, GeoMesa and different storage solutions. The intricacy of 

these situations can result in increased debt because of the connections between components 

causing challenges in diagnosing and fixing issues and potentially lengthening development 

phases and deployment schedules. To manage this complexity effectively, it is essential to 

review the architecture, refactor code and configurations to simplify interactions and update 

documentation for clarity during future maintenance and enhancements. 

Issues with maintaining code and configurations also contribute to debt. Quick development 

cycles and evolving requirements often lead to compromises on code quality and configuration 

management practices resulting in an accumulation of debt over time. Source-codes, outdated 

configurations and dependencies on libraries can compromise the stability, scalability and 

maintainability of your system. To address this issue, it is crucial to embrace integration and 

delivery (CI/CD) practices for automating testing and deployment processes conduct code re-

views prioritize refactoring initiatives and keep documentation up to date. 

Furthermore, data governance issues pose risks related to debt. Issues like inconsistent 

schema management or insufficient data validation procedures can lead to debt associated 

with data integrity and compliance. Noncompliance with regulations (such as GDPR) or internal 

data standards may result in liabilities, data breaches or disruptions in operations. To tackle 

this issue, it is crucial to set up defined data management rules and protocols, automate data 

validation tasks when feasible carry out checks to uphold standards, and offer continuous train-

ing to individuals handling data management and oversight. 

  



 

 

14. Glossary 
Table 6. Table of key terms used in this template. 

Term Description 

arc42 Template we used for this document, which are used describe system 

architecture related to software (https://arc42.org/overview). 

Avro A data serialization system that is used for efficiently storing and trans-

ferring data, especially used within big data (https://avro.apache.org/ ). 

C# Object-oriented programming language developed by Microsoft and is 

part of the .NET framework (https://dotnet.microsoft.com/en-us/lan-

guages/csharp). 

GeoMesa An open-source large-scale geospatial software package 

(https://www.geomesa.org/)  

GeoServer An open-source server for sharing geospatial data (https://ge-

oserver.org/) 

GeoTIFF A file format for storing georeferenced raster imagery. 

GlusterFS A scalable network filesystem. 

HADOOP A framework for distributed storage and processing of large data sets 

(https://hadoop.apache.org/) 

Hbase An open-source, distributed database (https://hbase.apache.org/) 

HTTP GET An HTTP request method is used to retrieve data from a server. 

HTTP POST An HTTP request method is used to send data to a server. 

Icinga An open-source monitoring system (https://icinga.com/) 

ImageMosaic A tool for creating mosaics of geospatial imagery. 

Java A high-level programming language used for building applications 

https://www.java.com/en/) 

Jupyter Note-

book 

An open-source web application for creating and sharing documents 

with runtime code and visualizations (https://jupyter.org) 

Kafka A distributed event streaming platform (https://kafka.apache.org/) 

Kerberos A network authentication protocol (https://web.mit.edu/kerberos/) 

Phoenix An open-source SQL query engine for Hbase (https://phoe-

nix.apache.org/) 

PostGIS A spatial database plugin for PostgreSQL (https://postgis.net/) 

PostgreSQL An open-source relational database management system 

(https://www.postgresql.org/) 

Proxmox A server virtualization management platform (https://www.prox-

mox.com/) 

Scala A programming language (https://www.scala-lang.org/) 

Schema Server A server that manages schemas for Avro data. 

Spark A big data processing engine 

YARN A resource management layer for Hadoop (https://ha-

doop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-

site/YARN.html) 

Zabbix An open-source monitoring software (https://www.zabbix.com/) 

Zeppelin Note-

book 

An open-source web application for creating and sharing documents 

with runtime code and visualizations (https://zeppelin.apache.org/) 

ZooKeeper A centralized service for maintaining configuration information for dis-

tributed synchronization (https://zookeeper.apache.org/) 

 



 

 

 
Conclusions 

The design of the Net4Cities Data Hub effectively achieves its objectives by creating a scalable 

and flexible system capable of retrieving, processing, storing and making the relevant data 

from the Net4Cities project accessible to a wide range of stakeholders. The layered approach 

to data ingestion, storage, processing and delivery ensures that data integrity and accessibility 

are maintained consistently. This architecture not only meets the requirements of the Net4Cit-

ies project but also establishes a solid groundwork for future improvements and integrations. 

The results of this output exhibit an organized strategy for managing and analyzing data, which 

is essential for understanding urban environmental conditions and providing valuable insights 

for stakeholders. As the project advances, the documented architectural choices will support 

development and upkeep, ensuring that the system stays in line with evolving needs. Subse-

quent tasks will expand on this framework by enhancing data processing capabilities, improv-

ing interfaces and incorporating data sources to further advance the objectives of the Net4Cit-

ies project in fostering more sustainable urban environments. 
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Acronyms 

Table 7. Table of acronyms used in this template. 

Acronym Meaning 

ACID Atomicity, Consistency, Isolation, Durability 

API Application Programming Interface 

BC Black Carbon, which is a component of particulate matter (PM). 

CH4 Methane 

CI/CD 
Continuous Integration/Continuous Deployment, a practice for automating software 
development and deployment. 

CO2 Carbon Dioxide 

GDPR General Data Protection Regulation 

GHG Greenhouse Gases 

GIS Geographic Information Systems 

HDFS Hadoop Distributed File System 

HTTP Hypertext Transfer Protocol, the foundation of data communication on the web. 

JSON JavaScript Object Notation, a lightweight data interchange format. 

LDSA Lung-depositing surface area of particles. 

LULC Land Use and Land Cover 

LULC Land Use/Land Cover, a classification of land based on its use and vegetation. 

N2O Nitrous Oxide 

https://chat.openai.com/


 

 

N4C Net4Cities 

NH3 Ammonia 

PM10 Particulate Matter 10 micrometers or less in diameter. 

PNC 
Particle Number Concentration, a measure of the number of particles in a given vol-
ume of air. 

QC Quality Control 

QM Quality Management 

RDD Resilient Distributed Dataset, a fundamental data structure of Apache Spark. 

REST API 
Representational State Transfer API and is a set of guidelines for building scalable 
web services. 

SLD Styled Layer Descriptor, an XML schema for styling of maps 

SLM Sound Level Meter 

SLM Service Level Management, a practice for managing service levels in IT. 

SQL Structured Query Language, a standard language for managing relational databases. 

SSD Solid State Drive, a storage device. 

SSL Secure Sockets Layer, a protocol for securing communications on the internet. 

TLS Transport Layer Security, a protocol for securing communications on the internet. 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VOC Volatile Organic Compounds 

WFS Web Feature Service 

WMS Web Map Service 

XML 
Extensible Markup Language is a markup language and file format for storage and 
transferring data. 
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